These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35591084)

  • 1. Machine Learning for Detection of Muscular Activity from Surface EMG Signals.
    Di Nardo F; Nocera A; Cucchiarelli A; Fioretti S; Morbidoni C
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle Co-Contraction Detection in the Time-Frequency Domain.
    Di Nardo F; Morano M; Strazza A; Fioretti S
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning.
    Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741
    [No Abstract]   [Full Text] [Related]  

  • 5. An adaptive algorithm for the determination of the onset and offset of muscle contraction by EMG signal processing.
    Xu Q; Quan Y; Yang L; He J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):65-73. PubMed ID: 23193462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalogram-energy based segmentation of surface electromyography signals from swallowing related muscles.
    Sebastian RV; Estefania PG; Andres OD
    Comput Methods Programs Biomed; 2020 Oct; 194():105480. PubMed ID: 32403048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-subject approach for gait-event prediction by neural network interpretation of EMG signals.
    Di Nardo F; Morbidoni C; Mascia G; Verdini F; Fioretti S
    Biomed Eng Online; 2020 Jul; 19(1):58. PubMed ID: 32723335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-Learning-Based Prediction of Gait Events From EMG in Cerebral Palsy Children.
    Morbidoni C; Cucchiarelli A; Agostini V; Knaflitz M; Fioretti S; Di Nardo F
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():819-830. PubMed ID: 33909568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective motor response onset detection in surface myoelectric signals.
    Staude G; Wolf W
    Med Eng Phys; 1999; 21(6-7):449-67. PubMed ID: 10624741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress Detection from Surface Electromyography using Convolutional Neural Networks.
    Robles D; Benchekroun M; Zalc V; Istrate D; Taramasco C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3235-3238. PubMed ID: 36086008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper Limb Movement Classification Via Electromyographic Signals and an Enhanced Probabilistic Network.
    Burns A; Adeli H; Buford JA
    J Med Syst; 2020 Aug; 44(10):176. PubMed ID: 32829419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sEMG-based Sarcopenia risk classification using empirical mode decomposition and machine learning algorithms.
    Kumar KS; Lee D; Jamsrandoj A; Soylu NN; Jung D; Kim J; Mun KR
    Math Biosci Eng; 2024 Jan; 21(2):2901-2921. PubMed ID: 38454712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a deep neural network for automated electromyographic pattern classification.
    Akhundov R; Saxby DJ; Edwards S; Snodgrass S; Clausen P; Diamond LE
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30760552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adapted double threshold protocol for spastic muscles.
    Vieira PM; Ferreira JF; Gomes PR; Lima CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3630-3633. PubMed ID: 28269081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of background muscle activity on computerized detection of sEMG onset and offset.
    Lee AS; Cholewicki J; Reeves NP
    J Biomech; 2007; 40(15):3521-6. PubMed ID: 17588589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of sEMG Onset Detection Methods for Occupational Exoskeletons on Extensive Close-to-Application Data.
    Kreipe S; Helbig T; Witte H; Schumann NP; Anders C
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel algorithm for real-time onset detection of surface electromyography in step-tracking wrist movements.
    Kuroda Y; Nisky I; Uranishi Y; Imura M; Okamura AM; Oshiro O
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2056-9. PubMed ID: 24110123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent Neural Network for Contaminant Type Detector in Surface Electromyography Signals.
    Machado J; Tosin MC; Bagesteiro LB; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3759-3762. PubMed ID: 33018819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.