These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35591084)

  • 21. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.
    Karthick PA; Ghosh DM; Ramakrishnan S
    Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An optimized method for tremor detection and temporal tracking through repeated second order moment calculations on the surface EMG signal.
    De Marchis C; Schmid M; Conforto S
    Med Eng Phys; 2012 Nov; 34(9):1268-77. PubMed ID: 22257701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel formulation of a double threshold algorithm for the estimation of muscle activation intervals designed for variable SNR environments.
    Severini G; Conforto S; Schmid M; D'Alessio T
    J Electromyogr Kinesiol; 2012 Dec; 22(6):878-85. PubMed ID: 22608279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques.
    Mokri C; Bamdad M; Abolghasemi V
    Med Biol Eng Comput; 2022 Mar; 60(3):683-699. PubMed ID: 35029815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unsupervised Stochastic Strategies for Robust Detection of Muscle Activation Onsets in Surface Electromyogram.
    Selvan SE; Allexandre D; Amato U; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1279-1291. PubMed ID: 29877853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural network committees for finger joint angle estimation from surface EMG signals.
    Shrirao NA; Reddy NP; Kosuri DR
    Biomed Eng Online; 2009 Jan; 8():2. PubMed ID: 19154615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study.
    Keihani A; Mohammadi AM; Marzbani H; Nafissi S; Haidari MR; Jafari AH
    PLoS One; 2022; 17(7):e0270757. PubMed ID: 35776772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the influence of SNR and pre-processing filter bandwidth on the extraction of different muscle co-activation indexes from surface EMG data.
    Rinaldi M; D'Anna C; Schmid M; Conforto S
    J Electromyogr Kinesiol; 2018 Dec; 43():184-192. PubMed ID: 30384220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved and Secured Electromyography in the Internet of Health Things.
    Usman M; Kamal M; Tariq M
    IEEE J Biomed Health Inform; 2022 May; 26(5):2032-2040. PubMed ID: 34623287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot.
    Pérez-Reynoso F; Farrera-Vazquez N; Capetillo C; Méndez-Lozano N; González-Gutiérrez C; López-Neri E
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Surface Electromyographic Signal-Based Hand Gesture Prediction Using a Recurrent Neural Network.
    Zhang Z; He C; Yang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32709164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.
    Lobo-Prat J; Janssen MMHP; Koopman BFJM; Stienen AHA; de Groot IJM
    J Neuroeng Rehabil; 2017 Aug; 14(1):86. PubMed ID: 28851391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time intelligent pattern recognition algorithm for surface EMG signals.
    Khezri M; Jahed M
    Biomed Eng Online; 2007 Dec; 6():45. PubMed ID: 18053184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning.
    Lu Y; Wang H; Hu F; Zhou B; Xi H
    Med Biol Eng Comput; 2021 Apr; 59(4):883-899. PubMed ID: 33745104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing the Accuracy of Visual and Computerized Onset Detection Methods on Simulated Electromyography Signals with Varying Signal-to-Noise Ratios.
    Kowalski E; Catelli DS; Lamontagne M
    J Funct Morphol Kinesiol; 2021 Aug; 6(3):. PubMed ID: 34449669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. sEMG-Based Neural Network Prediction Model Selection of Gesture Fatigue and Dataset Optimization.
    Ma F; Song F; Liu Y; Niu J
    Comput Intell Neurosci; 2020; 2020():8853314. PubMed ID: 33224188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fault-Tolerant Sensor Detection of sEMG signals: Quality Analysis Using a Two-Class Support Vector Machine.
    Moura KOA; Ruschel RS; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5644-5647. PubMed ID: 30441616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time.
    Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852
    [No Abstract]   [Full Text] [Related]  

  • 40. Hand Gesture Recognition Using Compact CNN Via Surface Electromyography Signals.
    Chen L; Fu J; Wu Y; Li H; Zheng B
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.