These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35591154)
1. A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer. Salem S; Fraňa K Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591154 [TBL] [Abstract][Full Text] [Related]
2. Harnessing flow-induced vibrations for energy harvesting: Experimental and numerical insights using piezoelectric transducer. Islam M; Ali U; Mone S PLoS One; 2024; 19(6):e0304489. PubMed ID: 38857262 [TBL] [Abstract][Full Text] [Related]
3. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation. Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213 [TBL] [Abstract][Full Text] [Related]
4. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever. Xin M; Jiang X; Xu C; Yang J; Lu C Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677188 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the Performance of Piezoelectric Wind Energy Harvester Using Curve-Shaped Attachments on the Bluff Body. Poudel P; Sharma S; Ansari MNM; Vaish R; Kumar R; Ibrahim SM; Thomas P; Bowen C Glob Chall; 2023 Apr; 7(4):2100140. PubMed ID: 37020619 [TBL] [Abstract][Full Text] [Related]
6. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester. Kang JG; Kim H; Shin S; Kim BS Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153 [TBL] [Abstract][Full Text] [Related]
7. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Lee YJ; Qi Y; Zhou G; Lua KB Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701 [TBL] [Abstract][Full Text] [Related]
8. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow. Song R; Hou C; Yang C; Yang X; Guo Q; Shan X Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494 [TBL] [Abstract][Full Text] [Related]
9. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration. Jia J; Shan X; Upadrashta D; Xie T; Yang Y; Song R Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30562985 [TBL] [Abstract][Full Text] [Related]
10. Piezoelectric energy extraction from a cylinder undergoing vortex-induced vibration using internal resonance. Joy A; Joshi V; Narendran K; Ghoshal R Sci Rep; 2023 Apr; 13(1):6924. PubMed ID: 37117292 [TBL] [Abstract][Full Text] [Related]
11. Trout-like multifunctional piezoelectric robotic fish and energy harvester. Tan D; Wang YC; Kohtanen E; Erturk A Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855 [TBL] [Abstract][Full Text] [Related]
12. A compound cantilever beam piezoelectric harvester based on wind energy excitation. Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Potential of Flow-Induced Vibration Energy Harvesting Using a Corrugated Hyperstructure Bluff Body. Yuan Y; Wang H; Yang C; Sun H; Tang Y; Zhang Z Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374708 [TBL] [Abstract][Full Text] [Related]
14. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations. Kumari N; Rakotondrabe M Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386 [TBL] [Abstract][Full Text] [Related]
15. Analysis on the three-dimensional coupled vibration of composite cylindrical piezoelectric transducers. Xu J; Lin S J Acoust Soc Am; 2018 Feb; 143(2):1206. PubMed ID: 29495700 [TBL] [Abstract][Full Text] [Related]
16. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region. Borazjani I; Sotiropoulos F J Fluid Mech; 2009; 621():321-364. PubMed ID: 19693281 [TBL] [Abstract][Full Text] [Related]
17. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter. Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434 [TBL] [Abstract][Full Text] [Related]
18. Karman Vortex Creation Using Cylinder for Flutter Energy Harvester Device. Atrah AB; Ab-Rahman MS; Salleh H; Nuawi MZ; Mohd Nor MJ; Jamaludin NB Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400418 [TBL] [Abstract][Full Text] [Related]
19. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body. Li X; Bi C; Li Z; Liu B; Wang T; Zhang S Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414 [TBL] [Abstract][Full Text] [Related]
20. Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction. Su WJ; Wang ZS Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]