These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35591220)
1. Analysis of Deep Learning-Based Phase Retrieval Algorithm Performance for Quantitative Phase Imaging Microscopy. Visitsattapongse S; Thadson K; Pechprasarn S; Thongpance N Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591220 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-based single-shot phase retrieval algorithm for surface plasmon resonance microscope based refractive index sensing application. Thadson K; Visitsattapongse S; Pechprasarn S Sci Rep; 2021 Aug; 11(1):16289. PubMed ID: 34381103 [TBL] [Abstract][Full Text] [Related]
3. A practical criterion for focusing of unstained cell samples using a digital holographic microscope. Malik R; Sharma P; Poulose S; Ahlawat S; Khare K J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768 [TBL] [Abstract][Full Text] [Related]
4. A similarity learning approach to content-based image retrieval: application to digital mammography. El-Naqa I; Yang Y; Galatsanos NP; Nishikawa RM; Wernick MN IEEE Trans Med Imaging; 2004 Oct; 23(10):1233-44. PubMed ID: 15493691 [TBL] [Abstract][Full Text] [Related]
5. Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging. Yang F; Pham TA; Brandenberg N; Lutolf MP; Ma J; Unser M IEEE Trans Image Process; 2021; 30():7025-7037. PubMed ID: 34329165 [TBL] [Abstract][Full Text] [Related]
6. Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study. Li Z; Jiang J; Chen K; Zheng Q; Liu X; Weng H; Wu S; Chen W Comput Methods Programs Biomed; 2021 May; 203():106048. PubMed ID: 33765481 [TBL] [Abstract][Full Text] [Related]
7. Deep convolutional neural network and IoT technology for healthcare. Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147 [TBL] [Abstract][Full Text] [Related]
8. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution. Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876 [TBL] [Abstract][Full Text] [Related]
10. Phase retrieval based on deep learning in grating interferometer. Oh O; Kim Y; Kim D; Hussey DS; Lee SW Sci Rep; 2022 Apr; 12(1):6739. PubMed ID: 35469034 [TBL] [Abstract][Full Text] [Related]
11. Deep learning based correction of RF field induced inhomogeneities for T2w prostate imaging at 7 T. Harrevelt SD; Meliado EFM; van Lier ALHMW; Reesink D; Meijer RP; Pluim JPW; Raaijmakers AJE NMR Biomed; 2023 Dec; 36(12):e5019. PubMed ID: 37622473 [TBL] [Abstract][Full Text] [Related]
12. A novel biomedical image indexing and retrieval system via deep preference learning. Pang S; Orgun MA; Yu Z Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790 [TBL] [Abstract][Full Text] [Related]
13. Utilization of a Deep Learning Algorithm for Microscope-Based Fatty Vacuole Quantification in a Fatty Liver Model in Mice. Ramot Y; Zandani G; Madar Z; Deshmukh S; Nyska A Toxicol Pathol; 2020 Jul; 48(5):702-707. PubMed ID: 32508268 [TBL] [Abstract][Full Text] [Related]
14. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences. Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895 [TBL] [Abstract][Full Text] [Related]
15. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Williams BM; Borroni D; Liu R; Zhao Y; Zhang J; Lim J; Ma B; Romano V; Qi H; Ferdousi M; Petropoulos IN; Ponirakis G; Kaye S; Malik RA; Alam U; Zheng Y Diabetologia; 2020 Feb; 63(2):419-430. PubMed ID: 31720728 [TBL] [Abstract][Full Text] [Related]
16. A content-based image retrieval system for the diagnosis of lymphoma using blood micrographs: An incorporation of deep learning with a traditional learning approach. Reena MR; Ameer PM Comput Biol Med; 2022 Jun; 145():105463. PubMed ID: 35421794 [TBL] [Abstract][Full Text] [Related]
17. Auto-focusing and quantitative phase imaging using deep learning for the incoherent illumination microscopy system. Ding H; Li F; Meng Z; Feng S; Ma J; Nie S; Yuan C Opt Express; 2021 Aug; 29(17):26385-26403. PubMed ID: 34615075 [TBL] [Abstract][Full Text] [Related]
18. A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. Yang L; Jin R; Mummert L; Sukthankar R; Goode A; Zheng B; Hoi SC; Satyanarayanan M IEEE Trans Pattern Anal Mach Intell; 2010 Jan; 32(1):30-44. PubMed ID: 19926897 [TBL] [Abstract][Full Text] [Related]
19. TIE-GANs: single-shot quantitative phase imaging using transport of intensity equation with integration of GANs. Thapa V; Galande AS; Ram GHP; John R J Biomed Opt; 2024 Jan; 29(1):016010. PubMed ID: 38293292 [TBL] [Abstract][Full Text] [Related]
20. Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach. Pandiyan VP; Khare K; John R J Biomed Opt; 2016 Oct; 21(10):106003. PubMed ID: 27768784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]