These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35591428)
1. Characterization of Mixed Pellets Made from Rubberwood ( Laosena R; Palamanit A; Luengchavanon M; Kittijaruwattana J; Nakason C; Lee SH; Chotikhun A Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591428 [TBL] [Abstract][Full Text] [Related]
2. Key fuel characteristics and techno-economic aspects of torrefied rubberwood biomass pellets produced by incorporating various cassava-based binders at varied doses. Kongto P; Palamanit A; Chaiprapat S; Tippayawong N; Khempila J; Ruangim P Environ Sci Pollut Res Int; 2024 May; 31(25):37663-37680. PubMed ID: 38780849 [TBL] [Abstract][Full Text] [Related]
3. Co-pyrolysis of plastic waste and eucalyptus waste wood for fuel pellets production: A study of fuel, mechanical, and combustion characteristics under varying binder proportion. Samal B; Sharma HB; Vanapalli KR; Dubey BK; Bhattacharya J Sci Total Environ; 2024 Sep; 944():173883. PubMed ID: 38866142 [TBL] [Abstract][Full Text] [Related]
4. Combustion characteristics of refuse-derived fuel pellets having varying plastic compositions. Tripathi P; Rao L Environ Sci Pollut Res Int; 2024 May; ():. PubMed ID: 38806986 [TBL] [Abstract][Full Text] [Related]
5. The RDF/SRF torrefaction: An effect of temperature on characterization of the product - Carbonized Refuse Derived Fuel. Białowiec A; Pulka J; Stępień P; Manczarski P; Gołaszewski J Waste Manag; 2017 Dec; 70():91-100. PubMed ID: 28951151 [TBL] [Abstract][Full Text] [Related]
6. Energy usage of spruce with waste face masks and spent coffee grounds as fuel in a pellet boiler. Čajová Kantová N; Nosek R; Backa A; Čaja A; Jewiarz M; Mudryk K Heliyon; 2024 Aug; 10(15):e34802. PubMed ID: 39157396 [TBL] [Abstract][Full Text] [Related]
7. Characterization of refuse derived fuel samples prepared from municipal solid waste in Vellore, India. Thawani B; Mahanty B; Behera SK Environ Technol; 2022 May; 43(12):1843-1852. PubMed ID: 33323041 [TBL] [Abstract][Full Text] [Related]
8. Detection of hydrogen gas-producing anaerobes in refuse-derived fuel (RDF) pellets. Sakka M; Kimura T; Ohmiya K; Sakka K Biosci Biotechnol Biochem; 2005 Nov; 69(11):2081-5. PubMed ID: 16306688 [TBL] [Abstract][Full Text] [Related]
9. Physical, mechanical and energy characterization of wood pellets obtained from three common tropical species. Artemio CP; Maginot NH; Serafín CU; Rahim FP; José Guadalupe RQ; Fermín CM PeerJ; 2018; 6():e5504. PubMed ID: 30202649 [TBL] [Abstract][Full Text] [Related]
10. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO Syguła E; Świechowski K; Stępień P; Koziel JA; Białowiec A Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374414 [TBL] [Abstract][Full Text] [Related]
11. Effect of torrefaction on fuel properties of biopellets. Çetinkaya B; Erkent S; Ekinci K; Civan M; Bilgili ME; Yurdakul S Heliyon; 2024 Jan; 10(2):e23989. PubMed ID: 38298728 [TBL] [Abstract][Full Text] [Related]
12. Comparison of fuel value and combustion characteristics of two different RDF samples. Sever Akdağ A; Atımtay A; Sanin FD Waste Manag; 2016 Jan; 47(Pt B):217-24. PubMed ID: 26360232 [TBL] [Abstract][Full Text] [Related]
13. Torrefaction and carbonization of refuse derived fuel: Char characterization and evaluation of gaseous and liquid emissions. Nobre C; Alves O; Longo A; Vilarinho C; Gonçalves M Bioresour Technol; 2019 Aug; 285():121325. PubMed ID: 30991186 [TBL] [Abstract][Full Text] [Related]
14. Comparison of microbial consortia in refuse-derived fuel (RDF) preparations between Japan and Germany. Sakka M; Kimura T; Sakka K Biosci Biotechnol Biochem; 2006 Dec; 70(12):2868-73. PubMed ID: 17151477 [TBL] [Abstract][Full Text] [Related]
15. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. Sharma HB; Dubey BK Waste Manag; 2020 Dec; 118():521-533. PubMed ID: 32980731 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the proximate analysis parameters of refuse-derived fuel based on deep learning approach. Günkaya Z; Özkan M; Özkan K; Bekgöz BO; Yorulmaz Ö; Özkan A; Banar M Environ Sci Pollut Res Int; 2023 Feb; 30(7):17327-17341. PubMed ID: 36195811 [TBL] [Abstract][Full Text] [Related]
17. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill. Tumuluru JS; Conner CC; Hoover AN J Vis Exp; 2016 Jun; (112):. PubMed ID: 27340875 [TBL] [Abstract][Full Text] [Related]
18. Turning trash into treasure: Torrefaction of mixed waste for improved fuel properties. A case study of metropolitan city. Farooq MU; Sadiq K; Anis M; Hussain G; Usman M; Fouad Y; Mujtaba MA; Fayaz H; Silitonga AS Heliyon; 2024 Apr; 10(7):e28980. PubMed ID: 38633643 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Biological Pretreatment of Rubberwood with White Rot Fungi for Enzymatic Hydrolysis. Nazarpour F; Abdullah DK; Abdullah N; Zamiri R Materials (Basel); 2013 May; 6(5):2059-2073. PubMed ID: 28809260 [TBL] [Abstract][Full Text] [Related]
20. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. Zhai Y; Wang T; Zhu Y; Peng C; Wang B; Li X; Li C; Zeng G Waste Manag; 2018 Jul; 77():185-194. PubMed ID: 30008408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]