These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35591618)

  • 1. Competition between Sliding and Peeling of Graphene Nanoribbons under Horizontal Drag.
    Li R; Xu F
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Tail Swing of Nanomillipedes.
    Li R; Cong Y; Xu F
    Nano Lett; 2023 Dec; 23(23):10879-10883. PubMed ID: 37823533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Registry-Dependent Peeling of Layered Material Interfaces: The Case of Graphene Nanoribbons on Hexagonal Boron Nitride.
    Ouyang W; Hod O; Urbakh M
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43533-43539. PubMed ID: 34486375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling nanoribbon peeling.
    Gigli L; Vanossi A; Tosatti E
    Nanoscale; 2019 Oct; 11(37):17396-17400. PubMed ID: 31528907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical peeling of tethered nanoribbons.
    Silva A; Tosatti E; Vanossi A
    Nanoscale; 2022 May; 14(17):6384-6391. PubMed ID: 35412551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachment Dynamics of Graphene Nanoribbons on Gold.
    Gigli L; Kawai S; Guerra R; Manini N; Pawlak R; Feng X; Müllen K; Ruffieux P; Fasel R; Tosatti E; Meyer E; Vanossi A
    ACS Nano; 2019 Jan; 13(1):689-697. PubMed ID: 30525461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene nanoribbons under mechanical strain.
    Chen C; Wu JZ; Lam KT; Hong G; Gong M; Zhang B; Lu Y; Antaris AL; Diao S; Guo J; Dai H
    Adv Mater; 2015 Jan; 27(2):303-9. PubMed ID: 25355690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super flexibility and stability of graphene nanoribbons under severe twist.
    Xia D; Li Q; Xue Q; Liang C; Dong M
    Phys Chem Chem Phys; 2016 Jul; 18(27):18406-13. PubMed ID: 27339120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators.
    Lin Z; Qin W; Zeng J; Chen W; Cui P; Cho JH; Qiao Z; Zhang Z
    Nano Lett; 2017 Jul; 17(7):4013-4018. PubMed ID: 28534404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.
    Zhang C; Hao XL; Wang CX; Wei N; Rabczuk T
    Sci Rep; 2017 Jan; 7():41398. PubMed ID: 28120921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices.
    Chen Z; Narita A; Müllen K
    Adv Mater; 2020 Nov; 32(45):e2001893. PubMed ID: 32945038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement.
    Kim ND; Metzger A; Hejazi V; Li Y; Kovalchuk A; Lee SK; Ye R; Mann JA; Kittrell C; Shahsavari R; Tour JM
    ACS Appl Mater Interfaces; 2016 May; 8(20):12985-91. PubMed ID: 27140722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasiballistic thermal transport in submicron-scale graphene nanoribbons at room-temperature.
    So S; Seol JH; Lee JH
    Nanoscale Adv; 2024 May; 6(11):2919-2927. PubMed ID: 38817424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic CoFe
    Zhao X; He C; Bai Q; Miao X; Cao C; Wu T
    Molecules; 2023 May; 28(10):. PubMed ID: 37241810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical manipulations on electronic transport of graphene nanoribbons.
    Wang J; Zhang G; Ye F; Wang X
    J Phys Condens Matter; 2015 Jun; 27(22):225305. PubMed ID: 25985040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.