These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35591738)

  • 1. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Strain Fatigue Life of HRB400 Steel Based on Meso-Deformation Inhomogeneity.
    Jin L; Zeng B; Lu D; Gao Y; Zhang K
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters.
    Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torsional Fatigue Life Prediction of 30CrMnSiNi2A Based on Meso-Inhomogeneous Deformation.
    Cen CX; Lu DM; Qin DW; Zhang KS
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg⁻Gd⁻Y⁻Zr Alloy.
    He C; Wu Y; Peng L; Su N; Li X; Yang K; Liu Y; Yuan S; Tian R
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic Deformation Induced Residual Stress Evolution and 3D Short Fatigue Crack Growth Investigated by Advanced Synchrotron Tomography Techniques.
    Dönges B; Syha M; Hüsecken AK; Pietsch U; Ludwig W; Krupp U; Christ HJ
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33810145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristic Features of Ultrafine-Grained Ti-45 wt.% Nb Alloy under High Cycle Fatigue.
    Mairambekova AM; Eroshenko AY; Oborin VA; Bannikov MV; Chebodaeva VV; Terekhina AI; Naimark OB; Dmitriev AI; Sharkeev YP
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and Low Cycle Fatigue Properties of AA5083 H111 Friction Stir Welded Joint.
    Torzewski J; Grzelak K; Wachowski M; Kosturek R
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low Cycle Fatigue Life Assessment Based on the Accumulated Plastic Strain Energy Density.
    Hu Y; Shi J; Cao X; Zhi J
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34063256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes.
    Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals.
    Zhang MH; Shen XH; He L; Zhang KS
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue.
    Zhang T; Jiang J; Britton B; Shollock B; Dunne F
    Proc Math Phys Eng Sci; 2016 May; 472(2189):20150792. PubMed ID: 27279765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue Property and Small Crack Propagation Mechanism of MIG Welding Joint of 6005A-T6 Aluminum Alloy.
    Peng Z; Yang S; Wang Z; Gao Z
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.
    Fintová S; Kunz L
    J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DIC-Based Study on Fatigue Damage Evolution in Pre-Corroded Aluminum Alloy 2024-T4.
    Song H; Liu C; Zhang H; Leen SB
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.