These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35591899)

  • 1. Second Harmonic Scattering Reveals Ion-Specific Effects at the SiO
    Bischoff M; Biriukov D; Předota M; Marchioro A
    J Phys Chem C Nanomater Interfaces; 2021 Nov; 125(45):25261-25274. PubMed ID: 35591899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Potential and Interfacial Water Order at the Amorphous TiO
    Bischoff M; Biriukov D; Předota M; Roke S; Marchioro A
    J Phys Chem C Nanomater Interfaces; 2020 May; 124(20):10961-10974. PubMed ID: 35592180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order.
    Marchioro A; Bischoff M; Lütgebaucks C; Biriukov D; Předota M; Roke S
    J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(33):20393-20404. PubMed ID: 35692558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Ion Adsorption on Mineral Nanoparticles.
    Ho TA; Greathouse JA; Lee AS; Criscenti LJ
    Langmuir; 2018 May; 34(20):5926-5934. PubMed ID: 29746135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonclassical Behavior in Competitive Ion Adsorption at a Charged Solid-Water Interface.
    Lee SS; Park C; Sturchio NC; Fenter P
    J Phys Chem Lett; 2020 May; 11(10):4029-4035. PubMed ID: 32290658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monovalent ion adsorption at the muscovite (001)-solution interface: relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation.
    Lee SS; Fenter P; Nagy KL; Sturchio NC
    Langmuir; 2012 Jun; 28(23):8637-50. PubMed ID: 22574993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size dependence of second-harmonic scattering from nanoparticles: Disentangling surface and electrostatic contributions.
    Chu B; Marchioro A; Roke S
    J Chem Phys; 2023 Mar; 158(9):094711. PubMed ID: 36889968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate.
    Wan B; Yan Y; Liu F; Tan W; He J; Feng X
    Sci Total Environ; 2016 Feb; 544():134-42. PubMed ID: 26657256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental studies on irreversibility of electrostatic adsorption of silica nanoparticles at solid-liquid interface.
    Li X; Niitsoo O; Couzis A
    J Colloid Interface Sci; 2014 Apr; 420():50-6. PubMed ID: 24559699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Ionic Strength on the Colloidal Stability and Interfacial Assembly of Hydrophobic Ethyl Cellulose Nanoparticles.
    Bizmark N; Ioannidis MA
    Langmuir; 2015 Sep; 31(34):9282-9. PubMed ID: 26241005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surfactant tail length and ionic strength on the interfacial properties of nanoparticle-surfactant complexes.
    Kirby SM; Anna SL; Walker LM
    Soft Matter; 2017 Dec; 14(1):112-123. PubMed ID: 29214259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion Distribution and Hydration Structure in the Stern Layer on Muscovite Surface.
    Kobayashi K; Liang Y; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2017 Apr; 33(15):3892-3899. PubMed ID: 28355074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.
    Zhang Z; Fenter P; Cheng L; Sturchio NC; Bedzyk MJ; Predota M; Bandura A; Kubicki JD; Lvov SN; Cummings PT; Chialvo AA; Ridley MK; Bénézeth P; Anovitz L; Palmer DA; Machesky ML; Wesolowski DJ
    Langmuir; 2004 Jun; 20(12):4954-69. PubMed ID: 15984256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Orientation at the Anatase TiO
    Bischoff M; Kim NY; Joo JB; Marchioro A
    J Phys Chem Lett; 2022 Sep; 13(37):8677-8683. PubMed ID: 36094378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physisorption of α-chymotrypsin on SiO2 and TiO2: A comparative study via experiments and molecular dynamics simulations.
    Derr L; Hildebrand N; Köppen S; Kunze S; Treccani L; Dringen R; Rezwan K; Colombi Ciacchi L
    Biointerphases; 2016 Mar; 11(1):011007. PubMed ID: 26869164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of confinement on the adsorption behavior of inorganic and organic ions at aqueous-cyclohexane interfaces: a molecular dynamics study.
    Hosseini Anvari M; Choi P
    Phys Chem Chem Phys; 2019 Oct; 21(37):20770-20781. PubMed ID: 31513204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of cation adsorption by isostructural rutile and cassiterite.
    Machesky M; Wesolowski D; Rosenqvist J; Předota M; Vlcek L; Ridley M; Kohli V; Zhang Z; Fenter P; Cummings P; Lvov S; Fedkin M; Rodriguez-Santiago V; Kubicki J; Bandura A
    Langmuir; 2011 Apr; 27(8):4585-93. PubMed ID: 21417233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Mechanistic Insights into the Ionic-Strength-Controlled Interfacial Behavior of Proteins on a TiO
    Dong Y; Laaksonen A; Gao Q; Ji X
    Langmuir; 2021 Oct; 37(39):11499-11507. PubMed ID: 34549968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulation of Ion Adsorption and Ligand Exchange on an Orthoclase Surface.
    Liu Q; Zhang X; Jiang B; Li J; Li T; Shao X; Cai W; Wang H; Zhang Y
    ACS Omega; 2021 Jun; 6(23):14952-14962. PubMed ID: 34151076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.