BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35592564)

  • 1. Application of Parallel Reaction Monitoring in
    Reyes AV; Shrestha R; Baker PR; Chalkley RJ; Xu SL
    Front Plant Sci; 2022; 13():832585. PubMed ID: 35592564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Protein Quantification Using Parallel Reaction Monitoring (PRM).
    Barkovits K; Chen W; Kohl M; Bracht T
    Methods Mol Biol; 2021; 2228():145-157. PubMed ID: 33950489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical considerations for large-scale parallel reaction monitoring analysis.
    Gallien S; Bourmaud A; Kim SY; Domon B
    J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Quantification of Phosphopeptides by Parallel Reaction Monitoring (PRM).
    Stolze SC; Nakagami H
    Methods Mol Biol; 2020; 2139():213-224. PubMed ID: 32462589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications.
    Bourmaud A; Gallien S; Domon B
    Proteomics; 2016 Aug; 16(15-16):2146-59. PubMed ID: 27145088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.
    Rauniyar N
    Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A MS data search method for improved 15N-labeled protein identification.
    Zhang Y; Webhofer C; Reckow S; Filiou MD; Maccarrone G; Turck CW
    Proteomics; 2009 Sep; 9(17):4265-70. PubMed ID: 19722194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Gel Stable-Isotope Labeling (ISIL): a strategy for mass spectrometry-based relative quantification.
    Asara JM; Zhang X; Zheng B; Christofk HH; Wu N; Cantley LC
    J Proteome Res; 2006 Jan; 5(1):155-63. PubMed ID: 16396506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-tag labeling coupled with multiple reaction monitoring-mass spectrometry for absolute quantitation of proteins.
    Wang X; Wang X; Qin W; Lin H; Wang J; Wei J; Zhang Y; Qian X
    Analyst; 2013 Sep; 138(18):5309-17. PubMed ID: 23869378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
    Gallien S; Duriez E; Crone C; Kellmann M; Moehring T; Domon B
    Mol Cell Proteomics; 2012 Dec; 11(12):1709-23. PubMed ID: 22962056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Establishment of dual reverse phase chromatography combined parallel reaction monitoring for targeted quantitative proteomics].
    Li K; Song L; Shi W; Tian X
    Sheng Wu Gong Cheng Xue Bao; 2017 Nov; 33(11):1859-1868. PubMed ID: 29202522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA).
    Guo G; Li N
    Phytochemistry; 2011 Jul; 72(10):1028-39. PubMed ID: 21315391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry.
    Gallien S; Domon B
    Methods; 2015 Jun; 81():15-23. PubMed ID: 25843604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable Isotope-Triggered Offset Fragmentation Allows Massively Multiplexed Target Profiling on Quadrupole-Orbitrap Mass Spectrometers.
    Grossegesse M; Hartkopf F; Nitsche A; Doellinger J
    J Proteome Res; 2020 Jul; 19(7):2854-2862. PubMed ID: 32369372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved quantitative analysis of mass spectrometry using quadratic equations.
    Yoon JY; Lim KY; Lee S; Park K; Paek E; Kang UB; Yeom J; Lee C
    J Proteome Res; 2010 May; 9(5):2775-85. PubMed ID: 20329765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers.
    Heller M; Mattou H; Menzel C; Yao X
    J Am Soc Mass Spectrom; 2003 Jul; 14(7):704-18. PubMed ID: 12837592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 18O-labeled proteome reference as global internal standards for targeted quantification by selected reaction monitoring-mass spectrometry.
    Kim JS; Fillmore TL; Liu T; Robinson E; Hossain M; Champion BL; Moore RJ; Camp DG; Smith RD; Qian WJ
    Mol Cell Proteomics; 2011 Dec; 10(12):M110.007302. PubMed ID: 21988777
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.