These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35592604)

  • 21. Movement on the cell surface of the gliding bacterium, Mycoplasma mobile, is limited to its head-like structure.
    Miyata M; Uenoyama A
    FEMS Microbiol Lett; 2002 Oct; 215(2):285-9. PubMed ID: 12399048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behaviors and Energy Source of
    Mizutani M; Miyata M
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31308069
    [No Abstract]   [Full Text] [Related]  

  • 23. Role of binding in Mycoplasma mobile and Mycoplasma pneumoniae gliding analyzed through inhibition by synthesized sialylated compounds.
    Kasai T; Nakane D; Ishida H; Ando H; Kiso M; Miyata M
    J Bacteriol; 2013 Feb; 195(3):429-35. PubMed ID: 23123913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospects for the gliding mechanism of Mycoplasma mobile.
    Miyata M; Hamaguchi T
    Curr Opin Microbiol; 2016 Feb; 29():15-21. PubMed ID: 26500189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and sequence analyses of the gliding machinery proteins from Mycoplasma mobile.
    Tulum I; Kimura K; Miyata M
    Sci Rep; 2020 Mar; 10(1):3792. PubMed ID: 32123220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphology of isolated Gli349, a leg protein responsible for Mycoplasma mobile gliding via glass binding, revealed by rotary shadowing electron microscopy.
    Adan-Kubo J; Uenoyama A; Arata T; Miyata M
    J Bacteriol; 2006 Apr; 188(8):2821-8. PubMed ID: 16585743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytoskeletal asymmetrical dumbbell structure of a gliding mycoplasma, Mycoplasma gallisepticum, revealed by negative-staining electron microscopy.
    Nakane D; Miyata M
    J Bacteriol; 2009 May; 191(10):3256-64. PubMed ID: 19286806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study.
    Lesoil C; Nonaka T; Sekiguchi H; Osada T; Miyata M; Afrin R; Ikai A
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1312-7. PubMed ID: 20004642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reprint of “Prospects for the gliding mechanism of Mycoplasma mobile”.
    Miyata M; Hamaguchi T
    Curr Opin Microbiol; 2015 Dec; 28():122-8. PubMed ID: 26711226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae.
    Kawamoto A; Matsuo L; Kato T; Yamamoto H; Namba K; Miyata M
    mBio; 2016 Apr; 7(2):e00243-16. PubMed ID: 27073090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removing the parachuting artifact using two-way scanning data in high-speed atomic force microscopy.
    Kubo S; Umeda K; Kodera N; Takada S
    Biophys Physicobiol; 2023; 20(1):e200006. PubMed ID: 37234854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Guide to studying intrinsically disordered proteins by high-speed atomic force microscopy.
    Kodera N; Ando T
    Methods; 2022 Nov; 207():44-56. PubMed ID: 36055623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force and velocity of mycoplasma mobile gliding.
    Miyata M; Ryu WS; Berg HC
    J Bacteriol; 2002 Apr; 184(7):1827-31. PubMed ID: 11889087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Speed Atomic Force Microscopy to Study Myosin Motility.
    Kodera N; Ando T
    Adv Exp Med Biol; 2020; 1239():127-152. PubMed ID: 32451858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycoplasma mobile cells elongated by detergent and their pivoting movements in gliding.
    Nakane D; Miyata M
    J Bacteriol; 2012 Jan; 194(1):122-30. PubMed ID: 22001513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Practical considerations for feature assignment in high-speed AFM of live cell membranes.
    Hall D; Foster AS
    Biophys Physicobiol; 2022; 19():1-21. PubMed ID: 35797405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.