These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35592736)

  • 1. Interplay between Polaritonic and Molecular Trap States.
    Mony J; Yu Y; Schäfer C; Mallick S; Kushwaha K; Börjesson K
    J Phys Chem C Nanomater Interfaces; 2022 May; 126(18):7965-7972. PubMed ID: 35592736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations.
    Groenhof G; Climent C; Feist J; Morozov D; Toppari JJ
    J Phys Chem Lett; 2019 Sep; 10(18):5476-5483. PubMed ID: 31453696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative pumping in a strongly coupled microcavity filled with a neat molecular film showing excimer emission.
    Sasaki Y; Georgiou K; Wang S; Bossanyi DG; Jayaprakash R; Yanai N; Kimizuka N; Lidzey DG; Musser AJ; Clark J
    Phys Chem Chem Phys; 2024 May; 26(20):14745-14753. PubMed ID: 38716658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose enhancement of excitation-energy transfer with molecular-exciton-polariton condensates.
    Phuc NT
    J Chem Phys; 2022 Jun; 156(23):234301. PubMed ID: 35732524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities.
    Polak D; Jayaprakash R; Lyons TP; Martínez-Martínez LÁ; Leventis A; Fallon KJ; Coulthard H; Bossanyi DG; Georgiou K; Petty Ii AJ; Anthony J; Bronstein H; Yuen-Zhou J; Tartakovskii AI; Clark J; Musser AJ
    Chem Sci; 2020 Jan; 11(2):343-354. PubMed ID: 32190258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Investigation of the Rate of Intersystem Crossing in the Strong Exciton-Photon Coupling Regime.
    Mukherjee A; Feist J; Börjesson K
    J Am Chem Soc; 2023 Mar; 145(9):5155-5162. PubMed ID: 36813757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angle-Independent Polariton Emission Lifetime Shown by Perylene Hybridized to the Vacuum Field Inside a Fabry-Pérot Cavity.
    Mony J; Hertzog M; Kushwaha K; Börjesson K
    J Phys Chem C Nanomater Interfaces; 2018 Nov; 122(43):24917-24923. PubMed ID: 30450150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rise and Current Status of Polaritonic Photochemistry and Photophysics.
    Bhuyan R; Mony J; Kotov O; Castellanos GW; Gómez Rivas J; Shegai TO; Börjesson K
    Chem Rev; 2023 Sep; 123(18):10877-10919. PubMed ID: 37683254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverting singlet and triplet excited states using strong light-matter coupling.
    Eizner E; Martínez-Martínez LA; Yuen-Zhou J; Kéna-Cohen S
    Sci Adv; 2019 Dec; 5(12):eaax4482. PubMed ID: 31840063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Untargeted effects in organic exciton-polariton transient spectroscopy: A cautionary tale.
    Renken S; Pandya R; Georgiou K; Jayaprakash R; Gai L; Shen Z; Lidzey DG; Rao A; Musser AJ
    J Chem Phys; 2021 Oct; 155(15):154701. PubMed ID: 34686047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polariton-assisted manipulation of energy relaxation pathways: donor-acceptor role reversal in a tuneable microcavity.
    Dovzhenko D; Lednev M; Mochalov K; Vaskan I; Rakovich Y; Karaulov A; Nabiev I
    Chem Sci; 2021 Oct; 12(38):12794-12805. PubMed ID: 34703566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light-Molecule Coupling.
    DelPo CA; Kudisch B; Park KH; Khan SU; Fassioli F; Fausti D; Rand BP; Scholes GD
    J Phys Chem Lett; 2020 Apr; 11(7):2667-2674. PubMed ID: 32186878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry.
    Flick J; Narang P
    J Chem Phys; 2020 Sep; 153(9):094116. PubMed ID: 32891103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Yield of Polariton Emission from Hybrid Light-Matter States.
    Wang S; Chervy T; George J; Hutchison JA; Genet C; Ebbesen TW
    J Phys Chem Lett; 2014 Apr; 5(8):1433-9. PubMed ID: 26269990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling.
    Sokolovskii I; Tichauer RH; Morozov D; Feist J; Groenhof G
    Nat Commun; 2023 Oct; 14(1):6613. PubMed ID: 37857599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing the Dark State Problem in Strongly Coupled Organic Exciton-Polariton Systems.
    Michail E; Rashidi K; Liu B; He G; Menon VM; Sfeir MY
    Nano Lett; 2024 Jan; 24(2):557-565. PubMed ID: 38179964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems.
    Tichauer RH; Morozov D; Sokolovskii I; Toppari JJ; Groenhof G
    J Phys Chem Lett; 2022 Jul; 13(27):6259-6267. PubMed ID: 35771724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active control of polariton-enabled long-range energy transfer.
    Cargioli A; Lednev M; Lavista L; Camposeo A; Sassella A; Pisignano D; Tredicucci A; Garcia-Vidal FJ; Feist J; Persano L
    Nanophotonics; 2024 Jun; 13(14):2541-2551. PubMed ID: 38836104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.