These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35592936)

  • 1. Understanding the structure and cutting mechanism of shaver blades: A case study on articular cartilage.
    Zhang Y; Chen Z; Wang C; Tang N; Dong B; Chen B
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1139-1156. PubMed ID: 35592936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The design of a novel arthroscopy shaver.
    Gu X; Yuan S; Xu P; Xiao S; Liu W; Lai W; Chen Z; Liang P; Zhao G
    Sci Rep; 2022 Aug; 12(1):13774. PubMed ID: 35962054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro effects of 3 common arthroscopic instruments on articular cartilage.
    Green LM; King JS; Bianski BM; Pink MM; Jobe CM
    Arthroscopy; 2006 Mar; 22(3):300-7. PubMed ID: 16517315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of reprocessed arthroscopic shaver blades.
    King JS; Pink MM; Jobe CM
    Arthroscopy; 2006 Oct; 22(10):1046-52. PubMed ID: 17027401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled laboratory testing of arthroscopic shaver systems: do blades, contact pressure, and speed influence their performance?
    Wieser K; Erschbamer M; Neuhofer S; Ek ET; Gerber C; Meyer DC
    Arthroscopy; 2012 Oct; 28(10):1497-503. PubMed ID: 22683374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of critical negative rake angle and friction characteristics in orthogonal cutting of AL1060 and T2.
    Ding Y; Shi G; Zhang H; Shi G; Han D
    Sci Prog; 2020; 103(1):36850419878065. PubMed ID: 31829866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MODERN APPROACHES TO CHOOSING SHAVER BLADE FOR ENDOSCOPIC SURGERY OF THE NASOPHARYNX AND PARANASAL SINUSES USING 3D MODELING.
    Shkorbotun YV; Liakh KV
    Wiad Lek; 2022; 75(11 pt 1):2646-2651. PubMed ID: 36591748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chip Formation and Orthogonal Cutting Optimisation of Unidirectional Carbon Fibre Composites.
    Abena A; Soo SL; Ataya S; Hassanin H; El-Sayed MA; Ahmadein M; Alsaleh NA; Ahmed MMZ; Essa K
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Modeling of Working Normal Rake Angles and Working Inclination Angles of Active Cutting Edges and Application in Cutting Force Prediction.
    Li P; Chang Z
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the Geometrical Features of the Cutting Edges of Abrasive Grains on the Removal Efficiency of the Ti6Al4V Titanium Alloy.
    Rypina Ł; Lipiński D; Banaszek K; Kacalak W; Szafraniec F
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NiTinol-based cutting edges for endovascular heart valve resection: first in-vitro cutting results.
    Wendt D; Stühle S; Kawa E; Thielmann M; Kipfmüller B; Wendt H; Hauck F; Vogel B; Fischer H; Jakob H
    Minim Invasive Ther Allied Technol; 2009; 18(1):1-7. PubMed ID: 19085189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Milling Force and Surface Quality during Slot Milling of Plain-Woven CFRP with PCD Tools.
    Xu Z; Wang Y
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal bone cutting: saw design and operating characteristics.
    Krause WR
    J Biomech Eng; 1987 Aug; 109(3):263-71. PubMed ID: 3657116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical modeling, Sobol sensitivity analysis and optimization of single-tip tool geometrical parameters in the cortical bone machining process.
    Tahmasbi V; Safari M; Joudaki J
    Proc Inst Mech Eng H; 2020 Jan; 234(1):28-38. PubMed ID: 31617818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Analysis of Bionic Cutting Blades Using Finite Element Method.
    Li M; Yang Y; Guo L; Chen D; Sun H; Tong J
    Appl Bionics Biomech; 2015; 2015():471347. PubMed ID: 27019583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the cutting edge angle of a titanium instrument on chip formation in the machining of trabecular and cortical bone.
    von See C; Stoetzer M; Ruecker M; Wagner M; Schumann P; Gellrich NC
    Int J Oral Maxillofac Implants; 2014; 29(4):942-8. PubMed ID: 25032776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe.
    Barber FA; Iwasko NG
    Arthroscopy; 2006 Dec; 22(12):1312-7. PubMed ID: 17157730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural damage and chemical contaminants on reprocessed arthroscopic shaver blades.
    Kobayashi M; Nakagawa Y; Okamoto Y; Nakamura S; Nakamura T
    Am J Sports Med; 2009 Feb; 37(2):266-73. PubMed ID: 19118081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on the Minimum Undeformed Chip Thickness Based on Effective Rake Angle in Micro Milling.
    Wu X; Liu L; Du M; Shen J; Jiang F; Li Y; Lin Y
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33027975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodology for Evaluating the Cutting Force of Planar Technical Blades Used in Flatfish Processing.
    Zieliński B; Chaciński T; Pimenov DY; Nadolny K
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.