These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35593127)

  • 1. Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability.
    Calhoun SGK; Brower KK; Suja VC; Kim G; Wang N; McCully AL; Kusumaatmaja H; Fuller GG; Fordyce PM
    Lab Chip; 2022 Jun; 22(12):2315-2330. PubMed ID: 35593127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers.
    Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY
    Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Flow Cytometry As Novel Technology in Studying the Effect of Droplet Size on Lipid Oxidation in Oil-in-Water Emulsions.
    Li P; McClements DJ; Decker EA
    J Agric Food Chem; 2020 Jan; 68(2):567-573. PubMed ID: 31860290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A double-step emulsification device for direct generation of double emulsions.
    Lai YK; Opalski AS; Garstecki P; Derzsi L; Guzowski J
    Soft Matter; 2022 Aug; 18(33):6157-6166. PubMed ID: 35770691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the microfluidic generation of double emulsion droplets with alginate shell.
    Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-precision screening and sorting of double emulsion droplets.
    Zhuang S; Semenec L; Nagy SS; Cain AK; Inglis DW
    Cytometry A; 2024 Jul; 105(7):547-554. PubMed ID: 38634684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery.
    Brower KK; Carswell-Crumpton C; Klemm S; Cruz B; Kim G; Calhoun SGK; Nichols L; Fordyce PM
    Lab Chip; 2020 Jun; 20(12):2062-2074. PubMed ID: 32417874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic generation of ATPS droplets by transient double emulsion technique.
    Zhou C; Zhu P; Han X; Shi R; Tian Y; Wang L
    Lab Chip; 2021 Jul; 21(14):2684-2690. PubMed ID: 34170274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence.
    Ho TM; Razzaghi A; Ramachandran A; Mikkonen KS
    Adv Colloid Interface Sci; 2022 Jan; 299():102541. PubMed ID: 34920366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double Emulsion Flow Cytometry for Rapid Single Genome Detection.
    Cowell T; Han HS
    Methods Mol Biol; 2023; 2689():155-167. PubMed ID: 37430053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial pressure and phospholipid density at emulsion droplet interface using fluorescence microscopy.
    Delacotte J; Gourier C; Pincet F
    Colloids Surf B Biointerfaces; 2014 May; 117():545-8. PubMed ID: 24373642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS.
    Brower KK; Khariton M; Suzuki PH; Still C; Kim G; Calhoun SGK; Qi LS; Wang B; Fordyce PM
    Anal Chem; 2020 Oct; 92(19):13262-13270. PubMed ID: 32900183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.
    Ma S; Huck WT; Balabani S
    Lab Chip; 2015 Nov; 15(22):4291-301. PubMed ID: 26394745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets.
    Guan X; Hou L; Ren Y; Deng X; Lang Q; Jia Y; Hu Q; Tao Y; Liu J; Jiang H
    Biomicrofluidics; 2016 May; 10(3):034111. PubMed ID: 27279935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alleviating Cell Lysate-Induced Inhibition to Enable RT-PCR from Single Cells in Picoliter-Volume Double Emulsion Droplets.
    Khariton M; McClune CJ; Brower KK; Klemm S; Sattely ES; Fordyce PM; Wang B
    Anal Chem; 2023 Jan; 95(2):935-945. PubMed ID: 36598332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Split or slip - passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system.
    Opalski AS; Makuch K; Derzsi L; Garstecki P
    RSC Adv; 2020 Jun; 10(39):23058-23065. PubMed ID: 35520343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.