These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35593297)
1. Revisiting Mg solubility in CuO nanorods: limit probed by neutron diffraction and effect on the particle toxicity towards bacteria in water. Clavier B; Zhadan A; Baptiste T; Boucher F; Guiet A; Porcher F; Brezová V; Roques C; Corbel G Dalton Trans; 2022 May; 51(21):8411-8424. PubMed ID: 35593297 [TBL] [Abstract][Full Text] [Related]
2. Understanding the bactericidal mechanism of Cu(OH) Clavier B; Baptiste T; Zhadan A; Guiet A; Boucher F; Brezová V; Roques C; Corbel G J Mater Chem B; 2022 Feb; 10(5):779-794. PubMed ID: 35040839 [TBL] [Abstract][Full Text] [Related]
3. Hydration and bactericidal activity of nanometer- and micrometer-sized particles of rock salt-type Mg Clavier B; Baptiste T; Barbieriková Z; Hajdu T; Guiet A; Boucher F; Brezová V; Roques C; Corbel G Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111997. PubMed ID: 33812617 [TBL] [Abstract][Full Text] [Related]
4. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Thakur N; Anu ; Kumar K; Kumar A Dalton Trans; 2021 May; 50(18):6188-6203. PubMed ID: 33871499 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide. Lv Y; Li L; Yin P; Lei T Dalton Trans; 2020 Apr; 49(15):4699-4709. PubMed ID: 32202585 [TBL] [Abstract][Full Text] [Related]
7. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Thekkae Padil VV; Černík M Int J Nanomedicine; 2013; 8():889-98. PubMed ID: 23467397 [TBL] [Abstract][Full Text] [Related]
8. Effect of tungsten doping on the structural, morphological and bactericidal properties of nanostructured CuO. Raba-Páez AM; D Malafatti JO; Parra-Vargas CA; Paris EC; Rincón-Joya M PLoS One; 2020; 15(9):e0239868. PubMed ID: 32986775 [TBL] [Abstract][Full Text] [Related]
9. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Azam A; Ahmed AS; Oves M; Khan MS; Memic A Int J Nanomedicine; 2012; 7():3527-35. PubMed ID: 22848176 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation. Li H; Zou Y; Jiang J Dalton Trans; 2020 Jul; 49(27):9274-9281. PubMed ID: 32572419 [TBL] [Abstract][Full Text] [Related]
11. CuO nanoparticles decorated on hydroxyapatite/ferrite magnetic support: photocatalysis, cytotoxicity, and antimicrobial response. Paris EC; Malafatti JOD; Moreira AJ; Santos LC; Sciena CR; Zenatti A; Escote MT; Mastelaro VR; Joya MR Environ Sci Pollut Res Int; 2022 Jun; 29(27):41505-41519. PubMed ID: 35088254 [TBL] [Abstract][Full Text] [Related]
12. Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles. Wetteland CL; Nguyen NY; Liu H Acta Biomater; 2016 Apr; 35():341-56. PubMed ID: 26923529 [TBL] [Abstract][Full Text] [Related]
13. Green Synthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from Qamar H; Rehman S; Chauhan DK; Tiwari AK; Upmanyu V Int J Nanomedicine; 2020; 15():2541-2553. PubMed ID: 32368039 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli. Moniri Javadhesari S; Alipour S; Mohammadnejad S; Akbarpour MR Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110011. PubMed ID: 31546455 [TBL] [Abstract][Full Text] [Related]
15. Probing the effect of Ni, Co and Fe doping concentrations on the antibacterial behaviors of MgO nanoparticles. Almontasser A; Parveen A Sci Rep; 2022 May; 12(1):7922. PubMed ID: 35562403 [TBL] [Abstract][Full Text] [Related]
16. Heterojunction formation between copper(II) oxide nanoparticles and single-walled carbon nanotubes to enhance antibacterial performance. Sapkota KP; Hassan MM; Shrestha S; Hanif MA; Islam MA; Akter J; Abbas HG; Hahn JR Int J Pharm; 2020 Nov; 590():119937. PubMed ID: 33011252 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of copper oxide nanoparticles for antimicrobial applications. Ren G; Hu D; Cheng EW; Vargas-Reus MA; Reip P; Allaker RP Int J Antimicrob Agents; 2009 Jun; 33(6):587-90. PubMed ID: 19195845 [TBL] [Abstract][Full Text] [Related]
18. Preparation and bactericidal property of MgO nanoparticles on gamma-Al2O3. Lin YJ; Li DQ; Wang G; Huang L; Duan X J Mater Sci Mater Med; 2005 Jan; 16(1):53-6. PubMed ID: 15754144 [TBL] [Abstract][Full Text] [Related]
19. Using MgO nanoparticles as a potential platform to precisely load and steadily release Ag ions for enhanced osteogenesis and bacterial killing. Yang S; Liang L; Liu L; Yin Y; Liu Y; Lei G; Zhou K; Huang Q; Wu H Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111399. PubMed ID: 33321576 [TBL] [Abstract][Full Text] [Related]
20. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Bondarenko O; Ivask A; Käkinen A; Kahru A Environ Pollut; 2012 Oct; 169():81-9. PubMed ID: 22694973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]