These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 35593306)
1. Crossing paths: recent insights in the interplay between autophagy and intracellular trafficking in plants. Gouguet P; Üstün S FEBS Lett; 2022 Sep; 596(17):2305-2313. PubMed ID: 35593306 [TBL] [Abstract][Full Text] [Related]
2. Molecular Mechanisms of Autophagy in Plants: Role of ATG8 Proteins in Formation and Functioning of Autophagosomes. Ryabovol VV; Minibayeva FV Biochemistry (Mosc); 2016 Apr; 81(4):348-63. PubMed ID: 27293092 [TBL] [Abstract][Full Text] [Related]
3. Detection of Autophagy in Plants by Fluorescence Microscopy. Pu Y; Bassham DC Methods Mol Biol; 2023; 2581():135-147. PubMed ID: 36413316 [TBL] [Abstract][Full Text] [Related]
4. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. Zhao J; Bui MT; Ma J; Künzl F; Picchianti L; De La Concepcion JC; Chen Y; Petsangouraki S; Mohseni A; García-Leon M; Gomez MS; Giannini C; Gwennogan D; Kobylinska R; Clavel M; Schellmann S; Jaillais Y; Friml J; Kang BH; Dagdas Y J Cell Biol; 2022 Dec; 221(12):. PubMed ID: 36260289 [TBL] [Abstract][Full Text] [Related]
5. Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase. He CW; Cui XF; Ma SJ; Xu Q; Ran YP; Chen WZ; Mu JX; Li H; Zhu J; Gong Q; Xie Z BMC Biol; 2021 Jun; 19(1):117. PubMed ID: 34088313 [TBL] [Abstract][Full Text] [Related]
6. Completing Autophagy: Formation and Degradation of the Autophagic Body and Metabolite Salvage in Plants. Stefaniak S; Wojtyla Ł; Pietrowska-Borek M; Borek S Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32210003 [TBL] [Abstract][Full Text] [Related]
7. A nuclear membrane-derived structure associated with Atg8 is involved in the sequestration of selective cargo, the Cvt complex, during autophagosome formation in yeast. Baba M; Tomonaga S; Suzuki M; Gen M; Takeda E; Matsuura A; Kamada Y; Baba N Autophagy; 2019 Mar; 15(3):423-437. PubMed ID: 30238844 [TBL] [Abstract][Full Text] [Related]
8. Non-canonical roles of ATG8 for TFEB activation. Nakamura S; Akayama S; Yoshimori T Biochem Soc Trans; 2022 Feb; 50(1):47-54. PubMed ID: 35166325 [TBL] [Abstract][Full Text] [Related]
9. Role of Atg8 in the regulation of vacuolar membrane invagination. Ishii A; Kurokawa K; Hotta M; Yoshizaki S; Kurita M; Koyama A; Nakano A; Kimura Y Sci Rep; 2019 Oct; 9(1):14828. PubMed ID: 31616012 [TBL] [Abstract][Full Text] [Related]
11. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses. Zhou J; Wang Z; Wang X; Li X; Zhang Z; Fan B; Zhu C; Chen Z Autophagy; 2018; 14(3):487-504. PubMed ID: 29313416 [TBL] [Abstract][Full Text] [Related]
12. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. Liu XM; Yamasaki A; Du XM; Coffman VC; Ohsumi Y; Nakatogawa H; Wu JQ; Noda NN; Du LL Elife; 2018 Nov; 7():. PubMed ID: 30451685 [TBL] [Abstract][Full Text] [Related]
13. Autophagic degradation of membrane-bound organelles in plants. Wang J; Zhang Q; Bao Y; Bassham DC Biosci Rep; 2023 Jan; 43(1):. PubMed ID: 36562332 [TBL] [Abstract][Full Text] [Related]
14. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. Yamaguchi M; Noda NN; Nakatogawa H; Kumeta H; Ohsumi Y; Inagaki F J Biol Chem; 2010 Sep; 285(38):29599-607. PubMed ID: 20615880 [TBL] [Abstract][Full Text] [Related]
15. Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore. Munzel L; Neumann P; Otto FB; Krick R; Metje-Sprink J; Kroppen B; Karedla N; Enderlein J; Meinecke M; Ficner R; Thumm M Autophagy; 2021 Jun; 17(6):1458-1478. PubMed ID: 32515645 [TBL] [Abstract][Full Text] [Related]
16. The interplay between endomembranes and autophagy in plants. Zeng Y; Li B; Lin Y; Jiang L Curr Opin Plant Biol; 2019 Dec; 52():14-22. PubMed ID: 31344498 [TBL] [Abstract][Full Text] [Related]
17. ATG8 Expansion: A Driver of Selective Autophagy Diversification? Kellner R; De la Concepcion JC; Maqbool A; Kamoun S; Dagdas YF Trends Plant Sci; 2017 Mar; 22(3):204-214. PubMed ID: 28038982 [TBL] [Abstract][Full Text] [Related]
18. Comparative analyses of ubiquitin-like ATG8 and cysteine protease ATG4 autophagy genes in the plant lineage and cross-kingdom processing of ATG8 by ATG4. Seo E; Woo J; Park E; Bertolani SJ; Siegel JB; Choi D; Dinesh-Kumar SP Autophagy; 2016 Nov; 12(11):2054-2068. PubMed ID: 27540766 [TBL] [Abstract][Full Text] [Related]
19. A method for the isolation and characterization of autophagic bodies from yeast provides a key tool to investigate cargos of autophagy. Kawamata T; Makino S; Kagohashi Y; Sasaki M; Ohsumi Y J Biol Chem; 2022 Dec; 298(12):102641. PubMed ID: 36306824 [TBL] [Abstract][Full Text] [Related]
20. Septin localization and function during autophagy. Barve G; Sanyal P; Manjithaya R Curr Genet; 2018 Oct; 64(5):1037-1041. PubMed ID: 29651536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]