These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 35593336)
1. Automatic Localization and Identification of Thoracic Diseases from Chest X-rays with Deep Learning. Zhang S; Tang T; Peng X; Zhang Y; Yang W; Li W; Xin X; Zhang J; Wang W; Zhang B Curr Med Imaging; 2022; 18(13):1416-1425. PubMed ID: 35593336 [TBL] [Abstract][Full Text] [Related]
2. Lesion-aware convolutional neural network for chest radiograph classification. Li F; Shi JX; Yan L; Wang YG; Zhang XD; Jiang MS; Wu ZZ; Zhou KQ Clin Radiol; 2021 Feb; 76(2):155.e1-155.e14. PubMed ID: 33077154 [TBL] [Abstract][Full Text] [Related]
3. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study. Taylor AG; Mielke C; Mongan J PLoS Med; 2018 Nov; 15(11):e1002697. PubMed ID: 30457991 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs. Kim TK; Yi PH; Wei J; Shin JW; Hager G; Hui FK; Sair HI; Lin CT J Digit Imaging; 2019 Dec; 32(6):925-930. PubMed ID: 30972585 [TBL] [Abstract][Full Text] [Related]
5. BarlowTwins-CXR: enhancing chest X-ray abnormality localization in heterogeneous data with cross-domain self-supervised learning. Sheng H; Ma L; Samson JF; Liu D BMC Med Inform Decis Mak; 2024 May; 24(1):126. PubMed ID: 38755563 [TBL] [Abstract][Full Text] [Related]
6. Thorax-Net: An Attention Regularized Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography. Wang H; Jia H; Lu L; Xia Y IEEE J Biomed Health Inform; 2020 Feb; 24(2):475-485. PubMed ID: 31329567 [TBL] [Abstract][Full Text] [Related]
7. Weighing features of lung and heart regions for thoracic disease classification. Fang J; Xu Y; Zhao Y; Yan Y; Liu J; Liu J BMC Med Imaging; 2021 Jun; 21(1):99. PubMed ID: 34112095 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the Robustness of Convolutional Neural Networks in Labeling Noise by Using Chest X-Ray Images From Multiple Centers. Jang R; Kim N; Jang M; Lee KH; Lee SM; Lee KH; Noh HN; Seo JB JMIR Med Inform; 2020 Aug; 8(8):e18089. PubMed ID: 32749222 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. Hwang EJ; Park S; Jin KN; Kim JI; Choi SY; Lee JH; Goo JM; Aum J; Yim JJ; Cohen JG; Ferretti GR; Park CM; JAMA Netw Open; 2019 Mar; 2(3):e191095. PubMed ID: 30901052 [TBL] [Abstract][Full Text] [Related]
10. CheXNet and feature pyramid network: a fusion deep learning architecture for multilabel chest X-Ray clinical diagnoses classification. Hasanah U; Avian C; Darmawan JT; Bachroin N; Faisal M; Prakosa SW; Leu JS; Tsai CT Int J Cardiovasc Imaging; 2024 Apr; 40(4):709-722. PubMed ID: 38150139 [TBL] [Abstract][Full Text] [Related]
11. Modeling long-range dependencies for weakly supervised disease classification and localization on chest X-ray. Li F; Zhou L; Wang Y; Chen C; Yang S; Shan F; Liu L Quant Imaging Med Surg; 2022 Jun; 12(6):3364-3378. PubMed ID: 35655823 [TBL] [Abstract][Full Text] [Related]
12. Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images. Tian Y; Wang J; Yang W; Wang J; Qian D Med Phys; 2022 Jan; 49(1):231-243. PubMed ID: 34802144 [TBL] [Abstract][Full Text] [Related]
13. Explainable Knowledge Distillation for On-Device Chest X-Ray Classification. Termritthikun C; Umer A; Suwanwimolkul S; Xia F; Lee I IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(4):846-856. PubMed ID: 37130250 [TBL] [Abstract][Full Text] [Related]
14. Generalizable Inter-Institutional Classification of Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks. Pan I; Agarwal S; Merck D J Digit Imaging; 2019 Oct; 32(5):888-896. PubMed ID: 30838482 [TBL] [Abstract][Full Text] [Related]
15. Discriminative Feature Learning for Thorax Disease Classification in Chest X-ray Images. Guan Q; Huang Y; Luo Y; Liu P; Xu M; Yang Y IEEE Trans Image Process; 2021; 30():2476-2487. PubMed ID: 33497335 [TBL] [Abstract][Full Text] [Related]
16. Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Seah JCY; Tang CHM; Buchlak QD; Holt XG; Wardman JB; Aimoldin A; Esmaili N; Ahmad H; Pham H; Lambert JF; Hachey B; Hogg SJF; Johnston BP; Bennett C; Oakden-Rayner L; Brotchie P; Jones CM Lancet Digit Health; 2021 Aug; 3(8):e496-e506. PubMed ID: 34219054 [TBL] [Abstract][Full Text] [Related]
17. Triple attention learning for classification of 14 thoracic diseases using chest radiography. Wang H; Wang S; Qin Z; Zhang Y; Li R; Xia Y Med Image Anal; 2021 Jan; 67():101846. PubMed ID: 33129145 [TBL] [Abstract][Full Text] [Related]
18. MRChexNet: Multi-modal bridge and relational learning for thoracic disease recognition in chest X-rays. Wang G; Wang P; Cong J; Wei B Math Biosci Eng; 2023 Nov; 20(12):21292-21314. PubMed ID: 38124598 [TBL] [Abstract][Full Text] [Related]
19. Automatic creation of annotations for chest radiographs based on the positional information extracted from radiographic image reports. Wang B; Takeda T; Sugimoto K; Zhang J; Wada S; Konishi S; Manabe S; Okada K; Matsumura Y Comput Methods Programs Biomed; 2021 Sep; 209():106331. PubMed ID: 34418813 [TBL] [Abstract][Full Text] [Related]
20. Learning to Generalize Towards Unseen Domains via a Content-Aware Style Invariant Model for Disease Detection From Chest X-Rays. Zunaed M; Haque MA; Hasan T IEEE J Biomed Health Inform; 2024 Jun; 28(6):3626-3636. PubMed ID: 38442052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]