These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35593455)

  • 1. High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer.
    Wang T; Li LY; Chen LN; Sheng T; Chen L; Wang YC; Zhang P; Hong YH; Ye J; Lin WF; Zhang Q; Zhang P; Fu G; Tian N; Sun SG; Zhou ZY
    J Am Chem Soc; 2022 Jun; 144(21):9292-9301. PubMed ID: 35593455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing CO Tolerance in PEMFC Anodes via Thermal Oxidation Induced RuO
    Chen L; Zhang P; Jin YQ; Yang H; Sheng T; Yan Y; Wang T; Chen Z; Tian N; Li X; Zhou ZY; Sun SG
    Nano Lett; 2024 Aug; 24(34):10642-10649. PubMed ID: 39158134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing CO-immune water dissociation sites around Pt to achieve stable operation in high CO concentration environment.
    Long D; Liu Y; Ping X; Chen F; Tao X; Xie Z; Wang M; Wang M; Li L; Guo L; Chen S; Wei Z
    Nat Commun; 2024 Sep; 15(1):8105. PubMed ID: 39285182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation.
    Vermaak L; Neomagus HWJP; Bessarabov DG
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of CO-tolerant Pt
    Liu Y; Duan Z; Henkelman G
    Phys Chem Chem Phys; 2019 Feb; 21(7):4046-4052. PubMed ID: 30714589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intriguing H
    Ke S; Cui B; Sun C; Qin Y; Zhang J; Dou M
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47765-47774. PubMed ID: 36251743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells.
    Xue Y; Shi L; Liu X; Fang J; Wang X; Setzler BP; Zhu W; Yan Y; Zhuang Z
    Nat Commun; 2020 Nov; 11(1):5651. PubMed ID: 33159046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pt Single Atoms on CrN Nanoparticles Deliver Outstanding Activity and CO Tolerance in the Hydrogen Oxidation Reaction.
    Yang Z; Chen C; Zhao Y; Wang Q; Zhao J; Waterhouse GIN; Qin Y; Shang L; Zhang T
    Adv Mater; 2023 Jan; 35(1):e2208799. PubMed ID: 36314386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton exchange membrane fuel cells powered with both CO and H
    Wang X; Li Y; Wang Y; Zhang H; Jin Z; Yang X; Shi Z; Liang L; Wu Z; Jiang Z; Zhang W; Liu C; Xing W; Ge J
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34663729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.
    Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B
    Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. V-O Species-Doped Carbon Frameworks Loaded with Ru Nanoparticles as Highly Efficient and CO-Tolerant Catalysts for Alkaline Hydrogen Oxidation.
    Wang P; Yang Y; Zheng W; Cheng Z; Wang C; Chen S; Wang D; Yang J; Shi H; Meng P; Wang P; Tong H; Chen J; Chen Q
    J Am Chem Soc; 2023 Dec; 145(50):27867-27876. PubMed ID: 38079607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured PtRu/C as anode catalysts prepared in a pseudomicroemulsion with ionic surfactant for direct methanol fuel cell.
    Xu W; Lu T; Liu C; Xing W
    J Phys Chem B; 2005 Aug; 109(30):14325-30. PubMed ID: 16852801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic modification effects induced by Fe in Pt-Ru-Fe ternary catalyst on the electrooxidation of CO/H₂ and methanol.
    Kim T; Kobayashi K; Take T; Nagai M
    J Oleo Sci; 2012; 61(3):127-34. PubMed ID: 22362143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Analysis for Demonstrating CO Tolerance of Catalysts in Polymer Electrolyte Membrane Fuel Cells.
    Min J; Jeffery AA; Kim Y; Jung N
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31597387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ X-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidation.
    Holstein WL; Rosenfeld HD
    J Phys Chem B; 2005 Feb; 109(6):2176-86. PubMed ID: 16851209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD).
    Jayaraju N; Banga D; Thambidurai C; Liang X; Kim YG; Stickney JL
    Langmuir; 2014 Mar; 30(11):3254-63. PubMed ID: 24568151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SO
    Huang B; He Y; Zhu Y; Wang Z; Cen K
    Langmuir; 2020 Mar; 36(12):3111-3118. PubMed ID: 32151130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High CO and sulfur tolerant proton exchange membrane fuel cell anodes enabled by "work along both lines" mechanism of 2,6-dihydroxymethyl pyridine molecule blocking layer.
    Zhang D; Liu W; Ye K; Li X
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):413-422. PubMed ID: 37722170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes.
    Wang H; Abruña HD
    J Phys Chem Lett; 2015 May; 6(10):1899-906. PubMed ID: 26263266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Structure Engineering of Single-Atom Ru Sites via Co-N4 Sites for Bifunctional pH-Universal Water Splitting.
    Rong C; Shen X; Wang Y; Thomsen L; Zhao T; Li Y; Lu X; Amal R; Zhao C
    Adv Mater; 2022 May; 34(21):e2110103. PubMed ID: 35384087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.