These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35593708)

  • 1. Diel Fluctuation of Extracellular Reactive Oxygen Species Production in the Rhizosphere of Rice.
    Dai H; Wu B; Chen B; Ma B; Chu C
    Environ Sci Technol; 2022 Jun; 56(12):9075-9082. PubMed ID: 35593708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tide-Triggered Production of Reactive Oxygen Species in Coastal Soils.
    Zhao G; Wu B; Zheng X; Chen B; Kappler A; Chu C
    Environ Sci Technol; 2022 Aug; 56(16):11888-11896. PubMed ID: 35816724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale Spatiotemporal Variation and Generation Mechanisms of Reactive Oxygen Species in the Rhizosphere of Ryegrass: Coupled Biotic-Abiotic Processes.
    Liu J; Zhu K; Zhang C; Zhang X; Chen N; Jia H
    Environ Sci Technol; 2022 Nov; 56(22):16483-16493. PubMed ID: 36326608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photochemical production of reactive intermediates at the wetland soil-water interface.
    Wu B; Zhou C; Zhao G; Wang J; Dai H; Liu T; Zheng X; Chen B; Chu C
    Water Res; 2022 Sep; 223():118971. PubMed ID: 35977437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiomes inhabiting rice roots and rhizosphere.
    Ding LJ; Cui HL; Nie SA; Long XE; Duan GL; Zhu YG
    FEMS Microbiol Ecol; 2019 May; 95(5):. PubMed ID: 30916760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Barrier Role of Iron Plaque: Producing Interfacial Hydroxyl Radicals to Degrade Rhizosphere Pollutants.
    Meng FL; Zhang X; Hu Y; Sheng GP
    Environ Sci Technol; 2024 Jan; 58(1):795-804. PubMed ID: 38095914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Cd availability in rice cultivation (Oryza sativa): Effects of amendments and the spatiotemporal chemical changes in the rhizosphere and bulk soil.
    Zeng T; Khaliq MA; Li H; Jayasuriya P; Guo J; Li Y; Wang G
    Ecotoxicol Environ Saf; 2020 Jun; 196():110490. PubMed ID: 32276161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Crystallinity-Dependent Photochemical Productions of Reactive Oxygen Species from Iron Minerals.
    Wang J; Wu B; Zheng X; Ma J; Yu W; Chen B; Chu C
    Environ Sci Technol; 2024 Jun; 58(24):10623-10631. PubMed ID: 38781516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Production of Hydroxyl Radicals during the Flooding-Drainage Process of Paddy Soil: An In Situ Column Study.
    Huang D; Chen N; Zhu C; Sun H; Fang G; Zhou D
    Environ Sci Technol; 2023 Oct; 57(43):16340-16347. PubMed ID: 37856081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-imaging platform for rhizosphere studies: Phosphorus and oxygen fluxes.
    Li XY; Li SQ; Jiang YF; Yang Q; Zhang JC; Kuzyakov Y; Teng HH; Guan DX
    J Environ Manage; 2024 Feb; 351():119763. PubMed ID: 38071921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O
    Larsen M; Santner J; Oburger E; Wenzel WW; Glud RN
    Plant Soil; 2015; 390(1-2):279-292. PubMed ID: 26166902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facet-Dependent Productions of Reactive Oxygen Species from Pyrite Oxidation.
    Tan M; Zheng X; Yu W; Chen B; Chu C
    Environ Sci Technol; 2024 Jan; 58(1):432-439. PubMed ID: 38111081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation.
    Pan W; Wu C; Xue S; Hartley W
    J Environ Sci (China); 2014 Apr; 26(4):892-9. PubMed ID: 25079420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal dynamics of reactive oxygen species and its effect on beta-blockers' degradation in aquatic plants' rhizosphere.
    Ji H; Li J; Gang D; Yu H; Jia H; Hu C; Qu J
    J Hazard Mater; 2024 Jul; 476():135146. PubMed ID: 38991643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of an Amendment on Cadmium Transportation in the Rhizosphere Soil-Rice System].
    Li YC; Wang YH; Tang MD; Wu BF; Li LF; Ai SY; Ling ZX
    Huan Jing Ke Xue; 2019 Jul; 40(7):3331-3338. PubMed ID: 31854735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Oscillations Activate Thermodynamically Stable Iron Minerals for Enhanced Reactive Oxygen Species Production.
    Zhao G; Tan M; Wu B; Zheng X; Xiong R; Chen B; Kappler A; Chu C
    Environ Sci Technol; 2023 Jun; 57(23):8628-8637. PubMed ID: 37254500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diel cycle of methanogen mcrA transcripts in rice rhizosphere.
    Xu Y; Ma K; Huang S; Liu L; Lu Y
    Environ Microbiol Rep; 2012 Dec; 4(6):655-63. PubMed ID: 23760937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizosphere effect and its associated soil-microbe interactions drive iron fraction dynamics in tidal wetland soils.
    Xiao S; Luo M; Liu Y; Bai J; Yang Y; Zhai Z; Huang J
    Sci Total Environ; 2021 Feb; 756():144056. PubMed ID: 33277009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere.
    Chen Z; Huang YC; Liang JH; Zhao F; Zhu YG
    Bioresour Technol; 2012 Mar; 108():55-9. PubMed ID: 22265978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation of phenanthrene and pyrene at the aerobic-anaerobic soil interface: differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars.
    He Y; Xia W; Li X; Lin J; Wu J; Xu J
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3908-19. PubMed ID: 25292301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.