These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35594109)

  • 1. Tuning Stoichiometry to Promote Formation of Binary Colloidal Superlattices.
    LaCour RA; Moore TC; Glotzer SC
    Phys Rev Lett; 2022 May; 128(18):188001. PubMed ID: 35594109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Artificial Neural Network Reveals the Nucleation Mechanism of a Binary Colloidal AB
    Coli GM; Dijkstra M
    ACS Nano; 2021 Mar; 15(3):4335-4346. PubMed ID: 33619953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High antisite defect concentrations in hard-sphere colloidal Laves phases.
    van der Meer B; Smallenburg F; Dijkstra M; Filion L
    Soft Matter; 2020 May; 16(17):4155-4161. PubMed ID: 32266918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Deep Learning Framework Discovers Compositional Order and Self-Assembly Pathways in Binary Colloidal Mixtures.
    Mao R; O'Leary J; Mesbah A; Mittal J
    JACS Au; 2022 Aug; 2(8):1818-1828. PubMed ID: 36032540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of charge asymmetry and charge screening on structure of superlattices formed by oppositely charged colloidal particles.
    Pavaskar G; Sharma S; Punnathanam SN
    J Chem Phys; 2012 Apr; 136(13):134506. PubMed ID: 22482571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Softness on the Stability of Binary Colloidal Crystals.
    LaCour RA; Adorf CS; Dshemuchadse J; Glotzer SC
    ACS Nano; 2019 Dec; 13(12):13829-13842. PubMed ID: 31692332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Colloidal Laves Phases via Hard Tetramers and Hard Spheres: Bulk Phase Diagram and Sedimentation Behavior.
    Avvisati G; Dasgupta T; Dijkstra M
    ACS Nano; 2017 Aug; 11(8):7702-7709. PubMed ID: 28787126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Glass Transition: Enhanced Crystallization of the Laves Phases in Nearly Hard Spheres.
    Dasgupta T; Coli GM; Dijkstra M
    ACS Nano; 2020 Apr; 14(4):3957-3968. PubMed ID: 32250589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered Surface Structuring of Spherical Colloids with Binary Nanoparticle Superlattices.
    Meder F; Thomas SS; Bollhorst T; Dawson KA
    Nano Lett; 2018 Apr; 18(4):2511-2518. PubMed ID: 29579388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative 3D real-space analysis of Laves phase supraparticles.
    Wang D; van der Wee EB; Zanaga D; Altantzis T; Wu Y; Dasgupta T; Dijkstra M; Murray CB; Bals S; van Blaaderen A
    Nat Commun; 2021 Jun; 12(1):3980. PubMed ID: 34172743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase diagram of highly asymmetric binary hard-sphere mixtures.
    Dijkstra M; van Roij R; Evans R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5744-71. PubMed ID: 11969558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generic phase diagram of binary superlattices.
    Tkachenko AV
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10269-74. PubMed ID: 27566403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-driven entropic self-assembly of an open, reconfigurable, binary host-guest colloidal crystal.
    Moore TC; Anderson JA; Glotzer SC
    Soft Matter; 2021 Mar; 17(10):2840-2848. PubMed ID: 33564812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasicrystalline order in self-assembled binary nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Bodnarchuk MI; Ye X; Chen J; Murray CB
    Nature; 2009 Oct; 461(7266):964-7. PubMed ID: 19829378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field.
    Smallenburg F; Vutukuri HR; Imhof A; van Blaaderen A; Dijkstra M
    J Phys Condens Matter; 2012 Nov; 24(46):464113. PubMed ID: 23114053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of three-dimensional binary superlattices from multi-flavored particles.
    Pretti E; Zerze H; Song M; Ding Y; Mahynski NA; Hatch HW; Shen VK; Mittal J
    Soft Matter; 2018 Aug; 14(30):6303-6312. PubMed ID: 30014070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of multi-flavored two-dimensional colloidal crystals.
    Mahynski NA; Zerze H; Hatch HW; Shen VK; Mittal J
    Soft Matter; 2017 Aug; 13(32):5397-5408. PubMed ID: 28702631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Parsons-Lee and Onsager theories to predict nematic and demixing behavior in binary mixtures of hard rods and hard spheres.
    Cuetos A; Martínez-Haya B; Lago S; Rull LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061701. PubMed ID: 17677277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.