These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35594352)

  • 1. Hierarchical twinning governed by defective twin boundary in metallic materials.
    Zhu Q; Huang Q; Tian Y; Zhao S; Chen Y; Cao G; Song K; Zhou Y; Yang W; Zhang Z; An X; Zhou H; Wang J
    Sci Adv; 2022 May; 8(20):eabn8299. PubMed ID: 35594352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation.
    Hu X; Ni Y; Zhang Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32012856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical nanotwins in single-crystal-like nickel with high strength and corrosion resistance produced via a hybrid technique.
    Li Q; Xue S; Price P; Sun X; Ding J; Shang Z; Fan Z; Wang H; Zhang Y; Chen Y; Wang H; Hattar K; Zhang X
    Nanoscale; 2020 Jan; 12(3):1356-1365. PubMed ID: 31854411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of transformation-mediated twinning.
    Lu S; Sun X; Tian Y; An X; Li W; Chen Y; Zhang H; Vitos L
    PNAS Nexus; 2023 Jan; 2(1):pgac282. PubMed ID: 36712941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unstable twin in body-centered cubic tungsten nanocrystals.
    Wang X; Wang J; He Y; Wang C; Zhong L; Mao SX
    Nat Commun; 2020 May; 11(1):2497. PubMed ID: 32427858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing extreme twin-boundary shear deformability in metallic nanocrystals.
    Zhu Q; Kong L; Lu H; Huang Q; Chen Y; Liu Y; Yang W; Zhang Z; Sansoz F; Zhou H; Wang J
    Sci Adv; 2021 Sep; 7(36):eabe4758. PubMed ID: 34516918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New twinning route in face-centered cubic nanocrystalline metals.
    Wang L; Guan P; Teng J; Liu P; Chen D; Xie W; Kong D; Zhang S; Zhu T; Zhang Z; Ma E; Chen M; Han X
    Nat Commun; 2017 Dec; 8(1):2142. PubMed ID: 29247224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twinning-assisted dynamic adjustment of grain boundary mobility.
    Huang Q; Zhu Q; Chen Y; Gong M; Li J; Zhang Z; Yang W; Wang J; Zhou H; Wang J
    Nat Commun; 2021 Nov; 12(1):6695. PubMed ID: 34795234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-strong nanotwinned Al-Ni solid solution alloys with significant plasticity.
    Zhang YF; Li Q; Xue SC; Ding J; Xie DY; Li J; Niu T; Wang H; Wang H; Wang J; Zhang X
    Nanoscale; 2018 Nov; 10(46):22025-22034. PubMed ID: 30452036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on Controlling Grain Boundary Character Distribution during Twinning-Related Grain Boundary Engineering of Face-Centered Cubic Materials.
    Zhang YQ; Quan GZ; Zhao J; Yu YZ; Xiong W
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High stress twinning in a compositionally complex steel of very high stacking fault energy.
    Wang Z; Lu W; An F; Song M; Ponge D; Raabe D; Li Z
    Nat Commun; 2022 Jun; 13(1):3598. PubMed ID: 35739123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-activated recrystallization twin: New twinning path in pure aluminum enabled by cryogenic and rapid compression.
    Liu M; Wang P; Lu G; Huang CY; You Z; Wang CH; Yen HW
    iScience; 2022 May; 25(5):104248. PubMed ID: 35573191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.
    Zhang Z; Sheng H; Wang Z; Gludovatz B; Zhang Z; George EP; Yu Q; Mao SX; Ritchie RO
    Nat Commun; 2017 Feb; 8():14390. PubMed ID: 28218267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.
    Zhang Z; Huang S; Chen L; Zhu Z; Guo D
    Sci Rep; 2017 Mar; 7():45405. PubMed ID: 28349995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detwining in Mg alloy with a high density of twin boundaries.
    Li Y; Cui Y; Bian H; Sun S; Tang N; Chen Y; Liu B; Koizumi Y; Chiba A
    Sci Technol Adv Mater; 2014 Jun; 15(3):035003. PubMed ID: 27877679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design metastability in high-entropy alloys by tailoring unstable fault energies.
    Wang X; De Vecchis RR; Li C; Zhang H; Hu X; Sridar S; Wang Y; Chen W; Xiong W
    Sci Adv; 2022 Sep; 8(36):eabo7333. PubMed ID: 36083911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals.
    Wu XL; Liao XZ; Srinivasan SG; Zhou F; Lavernia EJ; Valiev RZ; Zhu YT
    Phys Rev Lett; 2008 Mar; 100(9):095701. PubMed ID: 18352724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion.
    Wu W; Song M; Ni S; Wang J; Liu Y; Liu B; Liao X
    Sci Rep; 2017 Apr; 7():46720. PubMed ID: 28429759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudo-Elasticity and Variable Electro-Conductivity Mediated by Size-Dependent Deformation Twinning in Molybdenum Nanocrystals.
    Peng H; Hou Y; Meng W; Zheng H; Zhao L; Zhang Y; Li K; Zhao P; Liu T; Jia S; Wang J
    Small; 2023 May; 19(21):e2206380. PubMed ID: 36828786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.