These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35594376)
1. Improved Interpretation of Protein Conformational Differences and Ligand Occupancy in Large-Scale Cross-Link Data. Keller A; Bakhtina AA; Chavez JD; Bruce JE J Proteome Res; 2022 Jun; 21(6):1475-1484. PubMed ID: 35594376 [TBL] [Abstract][Full Text] [Related]
2. Integrated Analysis of Cross-Links and Dead-End Peptides for Enhanced Interpretation of Quantitative XL-MS. Keller A; Tang X; Bruce JE J Proteome Res; 2023 Sep; 22(9):2900-2908. PubMed ID: 37552582 [TBL] [Abstract][Full Text] [Related]
3. Prediction of an Upper Limit for the Fraction of Interprotein Cross-Links in Large-Scale In Vivo Cross-Linking Studies. Keller A; Chavez JD; Felt KC; Bruce JE J Proteome Res; 2019 Aug; 18(8):3077-3085. PubMed ID: 31267744 [TBL] [Abstract][Full Text] [Related]
4. Leveraging the Entirety of the Protein Data Bank to Enable Improved Structure Prediction Based on Cross-Link Data. Keller A; Chavez JD; Tang X; Bruce JE J Proteome Res; 2021 Jan; 20(1):1087-1095. PubMed ID: 33263396 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Cross-Linking of Proteins and Protein Complexes. Barth M; Schmidt C Methods Mol Biol; 2021; 2228():385-400. PubMed ID: 33950504 [TBL] [Abstract][Full Text] [Related]
6. The Conformational Preference of Chemical Cross-linkers Determines the Cross-linking Probability of Reactive Protein Residues. Gong Z; Ye SX; Nie ZF; Tang C J Phys Chem B; 2020 Jun; 124(22):4446-4453. PubMed ID: 32369371 [TBL] [Abstract][Full Text] [Related]
7. The Importance of Non-accessible Crosslinks and Solvent Accessible Surface Distance in Modeling Proteins with Restraints From Crosslinking Mass Spectrometry. Matthew Allen Bullock J; Schwab J; Thalassinos K; Topf M Mol Cell Proteomics; 2016 Jul; 15(7):2491-500. PubMed ID: 27150526 [TBL] [Abstract][Full Text] [Related]
8. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links. Ding YH; Gong Z; Dong X; Liu K; Liu Z; Liu C; He SM; Dong MQ; Tang C J Biol Chem; 2017 Jan; 292(4):1187-1196. PubMed ID: 27994050 [TBL] [Abstract][Full Text] [Related]
9. Quantitative cross-linking/mass spectrometry to elucidate structural changes in proteins and their complexes. Chen ZA; Rappsilber J Nat Protoc; 2019 Jan; 14(1):171-201. PubMed ID: 30559374 [TBL] [Abstract][Full Text] [Related]
10. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes. Lössl P; Sinz A Methods Mol Biol; 2016; 1394():109-127. PubMed ID: 26700045 [TBL] [Abstract][Full Text] [Related]
11. Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing. Seebacher J; Mallick P; Zhang N; Eddes JS; Aebersold R; Gelb MH J Proteome Res; 2006 Sep; 5(9):2270-82. PubMed ID: 16944939 [TBL] [Abstract][Full Text] [Related]
12. Proper evaluation of chemical cross-linking-based spatial restraints improves the precision of modeling homo-oligomeric protein complexes. Gaber A; Gunčar G; Pavšič M BMC Bioinformatics; 2019 Sep; 20(1):464. PubMed ID: 31500562 [TBL] [Abstract][Full Text] [Related]
13. Integrated Analysis of Cross-Links and Dead-End Peptides for Enhanced Interpretation of Quantitative XL-MS. Keller A; Tang X; Bruce JE bioRxiv; 2023 May; ():. PubMed ID: 37398466 [TBL] [Abstract][Full Text] [Related]
14. In Situ Structural Restraints from Cross-Linking Mass Spectrometry in Human Mitochondria. Ryl PSJ; Bohlke-Schneider M; Lenz S; Fischer L; Budzinski L; Stuiver M; Mendes MML; Sinn L; O'Reilly FJ; Rappsilber J J Proteome Res; 2020 Jan; 19(1):327-336. PubMed ID: 31746214 [TBL] [Abstract][Full Text] [Related]
15. Multidimensional Cross-Linking and Real-Time Informatics for Multiprotein Interaction Studies. Mohr JP; Caudal A; Tian R; Bruce JE J Proteome Res; 2024 Jan; 23(1):107-116. PubMed ID: 38147001 [TBL] [Abstract][Full Text] [Related]
16. Divide and conquer: cleavable cross-linkers to study protein conformation and protein-protein interactions. Sinz A Anal Bioanal Chem; 2017 Jan; 409(1):33-44. PubMed ID: 27734140 [TBL] [Abstract][Full Text] [Related]
17. Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein Complexes through the Use of Multiple Cross-Linkers. Ding YH; Fan SB; Li S; Feng BY; Gao N; Ye K; He SM; Dong MQ Anal Chem; 2016 Apr; 88(8):4461-9. PubMed ID: 27010980 [TBL] [Abstract][Full Text] [Related]
18. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Jones AX; Cao Y; Tang YL; Wang JH; Ding YH; Tan H; Chen ZL; Fang RQ; Yin J; Chen RC; Zhu X; She Y; Huang N; Shao F; Ye K; Sun RX; He SM; Lei X; Dong MQ Nat Commun; 2019 Sep; 10(1):3911. PubMed ID: 31477730 [TBL] [Abstract][Full Text] [Related]
19. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Iacobucci C; Götze M; Ihling CH; Piotrowski C; Arlt C; Schäfer M; Hage C; Schmidt R; Sinz A Nat Protoc; 2018 Dec; 13(12):2864-2889. PubMed ID: 30382245 [TBL] [Abstract][Full Text] [Related]
20. XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data. Schweppe DK; Zheng C; Chavez JD; Navare AT; Wu X; Eng JK; Bruce JE Bioinformatics; 2016 Sep; 32(17):2716-8. PubMed ID: 27153666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]