BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35594496)

  • 1. Engineering of Extracellular Vesicles for Small Molecule-Regulated Cargo Loading and Cytoplasmic Delivery of Bioactive Proteins.
    Somiya M; Kuroda S
    Mol Pharm; 2022 Jul; 19(7):2495-2505. PubMed ID: 35594496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Extracellular Vesicles with Compound-Induced Cargo Delivery to Solid Tumors.
    Kim R; Kim JH
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOP-EVs: Technology of Protein delivery through Extracellular Vesicles is a versatile platform for intracellular protein delivery.
    Ilahibaks NF; Ardisasmita AI; Xie S; Gunnarsson A; Brealey J; Vader P; de Jong OG; de Jager S; Dekker N; Peacock B; Schiffelers RM; Sluijter JPG; Lei Z
    J Control Release; 2023 Mar; 355():579-592. PubMed ID: 36746337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy.
    Parada CA; de Oliveira IP; Gewehr MCF; Machado-Neto JA; Lima K; Eichler RAS; Lopes LR; Bechara LRG; Ferreira JCB; Festuccia WT; Censoni L; Tersariol ILS; Ferro ES
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution.
    Silva AM; Lázaro-Ibáñez E; Gunnarsson A; Dhande A; Daaboul G; Peacock B; Osteikoetxea X; Salmond N; Friis KP; Shatnyeva O; Dekker N
    J Extracell Vesicles; 2021 Aug; 10(10):e12130. PubMed ID: 34377376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reporter gene assay for membrane fusion of extracellular vesicles.
    Somiya M; Kuroda S
    J Extracell Vesicles; 2021 Nov; 10(13):e12171. PubMed ID: 34807503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Luminescence Assay for Cytoplasmic Cargo Delivery of Extracellular Vesicles.
    Somiya M; Kuroda S
    Anal Chem; 2021 Apr; 93(13):5612-5620. PubMed ID: 33759512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse Populations of Extracellular Vesicles with Opposite Functions during Herpes Simplex Virus 1 Infection.
    Dogrammatzis C; Saleh S; Deighan C; Kalamvoki M
    J Virol; 2021 Feb; 95(6):. PubMed ID: 33361424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.
    Hung ME; Leonard JN
    J Extracell Vesicles; 2016; 5():31027. PubMed ID: 27189348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Tension Probe for In Vitro Bioassays.
    Kim SB; Fujii R; Miller S; Tanabe M
    Methods Mol Biol; 2022; 2524():91-103. PubMed ID: 35821465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lipid-binding D4 domain of perfringolysin O facilitates the active loading of exogenous cargo into extracellular vesicles.
    Opadele AE; Nishioka S; Wu PH; Le QT; Shirato H; Nam JM; Onodera Y
    FEBS Lett; 2024 Feb; 598(4):446-456. PubMed ID: 38339784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association.
    Robida AM; Kerppola TK
    J Mol Biol; 2009 Dec; 394(3):391-409. PubMed ID: 19733184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
    Inobe T; Nukina N
    J Biosci Bioeng; 2016 Jul; 122(1):40-6. PubMed ID: 26777239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.
    Edwards SR; Wandless TJ
    J Biol Chem; 2007 May; 282(18):13395-401. PubMed ID: 17350953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles.
    Nasiri Kenari A; Cheng L; Hill AF
    Methods; 2020 May; 177():103-113. PubMed ID: 31917274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles.
    Es-Haghi M; Neustroeva O; Chowdhury I; Laitinen P; Väänänen MA; Korvenlaita N; Malm T; Turunen MP; Turunen TA
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of glycerol-water mixtures in the stability of FKBP12-rapalog-FRB complexes.
    Lopez JJD; Gaza JT; Nellas RB
    J Mol Graph Model; 2023 Nov; 124():108556. PubMed ID: 37423019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus-Free Method to Control and Enhance Extracellular Vesicle Cargo Loading and Delivery.
    Bui S; Dancourt J; Lavieu G
    ACS Appl Bio Mater; 2023 Mar; 6(3):1081-1091. PubMed ID: 36781171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating Designer Engineered Extracellular Vesicles for Diverse Ligand Display, Target Recognition, and Controlled Protein Loading and Delivery.
    Ivanova A; Badertscher L; O'Driscoll G; Bergman J; Gordon E; Gunnarsson A; Johansson C; Munson MJ; Spinelli C; Torstensson S; Vilén L; Voirel A; Wiseman J; Rak J; Dekker N; Lázaro-Ibáñez E
    Adv Sci (Weinh); 2023 Dec; 10(34):e2304389. PubMed ID: 37867228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.