BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35594496)

  • 41. Expanding the Chemogenetic Toolbox by Circular Permutation.
    Lee YT; He L; Zhou Y
    J Mol Biol; 2020 May; 432(10):3127-3136. PubMed ID: 32277990
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.
    Paulmurugan R; Gambhir SS
    Cancer Res; 2005 Aug; 65(16):7413-20. PubMed ID: 16103094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extracellular Vesicles as Delivery Vehicles of Specific Cellular Cargo.
    Mir B; Goettsch C
    Cells; 2020 Jul; 9(7):. PubMed ID: 32630649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rescue of degradation-prone mutants of the FK506-rapamycin binding (FRB) protein with chemical ligands.
    Stankunas K; Bayle JH; Havranek JJ; Wandless TJ; Baker D; Crabtree GR; Gestwicki JE
    Chembiochem; 2007 Jul; 8(10):1162-9. PubMed ID: 17525916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes.
    Joshi BS; de Beer MA; Giepmans BNG; Zuhorn IS
    ACS Nano; 2020 Apr; 14(4):4444-4455. PubMed ID: 32282185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR.
    Veverka V; Crabbe T; Bird I; Lennie G; Muskett FW; Taylor RJ; Carr MD
    Oncogene; 2008 Jan; 27(5):585-95. PubMed ID: 17684489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of Extracellular Vesicles Loaded with Therapeutic Cargo.
    Lamichhane TN; Jay SM
    Methods Mol Biol; 2018; 1831():37-47. PubMed ID: 30051423
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutation of FKBP associated protein 48 (FAP48) at proline 219 disrupts the interaction with FKBP12 and FKBP52.
    Neye H
    Regul Pept; 2001 Mar; 97(2-3):147-52. PubMed ID: 11164950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties.
    Dooley K; McConnell RE; Xu K; Lewis ND; Haupt S; Youniss MR; Martin S; Sia CL; McCoy C; Moniz RJ; Burenkova O; Sanchez-Salazar J; Jang SC; Choi B; Harrison RA; Houde D; Burzyn D; Leng C; Kirwin K; Ross NL; Finn JD; Gaidukov L; Economides KD; Estes S; Thornton JE; Kulman JD; Sathyanarayanan S; Williams DE
    Mol Ther; 2021 May; 29(5):1729-1743. PubMed ID: 33484965
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anchor Away: A System for Fast Inhibition of Proteins in Drosophila.
    Sanchez Bosch P
    Methods Mol Biol; 2022; 2540():239-249. PubMed ID: 35980581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Challenges and Possibilities of Extracellular Vesicles as Therapeutic Vehicles.
    Melling GE; Carollo E; Conlon R; Simpson JC; Carter DRF
    Eur J Pharm Biopharm; 2019 Nov; 144():50-56. PubMed ID: 31419585
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative analysis of calcineurin inhibition by complexes of immunosuppressive drugs with human FK506 binding proteins.
    Weiwad M; Edlich F; Kilka S; Erdmann F; Jarczowski F; Dorn M; Moutty MC; Fischer G
    Biochemistry; 2006 Dec; 45(51):15776-84. PubMed ID: 17176100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles.
    Jeyaram A; Lamichhane TN; Wang S; Zou L; Dahal E; Kronstadt SM; Levy D; Parajuli B; Knudsen DR; Chao W; Jay SM
    Mol Ther; 2020 Mar; 28(3):975-985. PubMed ID: 31911034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR.
    Sekiguchi M; Kobashigawa Y; Kawasaki M; Yokochi M; Kiso T; Suzumura K; Mori K; Teramura T; Inagaki F
    Protein Eng Des Sel; 2011 Nov; 24(11):811-7. PubMed ID: 21900305
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design.
    Kooijmans SAA; de Jong OG; Schiffelers RM
    Adv Drug Deliv Rev; 2021 Jun; 173():252-278. PubMed ID: 33798644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Post-translational Modification Regulates Formation and Cargo-Loading of Extracellular Vesicles.
    Carnino JM; Ni K; Jin Y
    Front Immunol; 2020; 11():948. PubMed ID: 32528471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EV Cargo Sorting in Therapeutic Development for Cardiovascular Disease.
    Sherman CD; Lodha S; Sahoo S
    Cells; 2021 Jun; 10(6):. PubMed ID: 34203713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acidification effects on isolation of extracellular vesicles from bovine milk.
    Rahman MM; Shimizu K; Yamauchi M; Takase H; Ugawa S; Okada A; Inoshima Y
    PLoS One; 2019; 14(9):e0222613. PubMed ID: 31525238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell proliferation through forced engagement of c-Kit and Flt-3.
    Otto KG; Jin L; Spencer DM; Blau CA
    Blood; 2001 Jun; 97(11):3662-4. PubMed ID: 11369667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.