These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35594729)

  • 1. Effects of N-linked glycans of bilirubin oxidase on direct electron transfer-type bioelectrocatalysis.
    Suzuki Y; Itoh A; Kataoka K; Yamashita S; Kano K; Sowa K; Kitazumi Y; Shirai O
    Bioelectrochemistry; 2022 Aug; 146():108141. PubMed ID: 35594729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts.
    Nishida S; Sumi H; Noji H; Itoh A; Kataoka K; Yamashita S; Kano K; Sowa K; Kitazumi Y; Shirai O
    Bioelectrochemistry; 2023 Aug; 152():108413. PubMed ID: 37028137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Porous Electrodes by the Anodization of Gold for an Application as Scaffolds in Direct-electron-transfer-type Bioelectrocatalysis.
    Sakai K; Kitazumi Y; Shirai O; Kano K
    Anal Sci; 2018 Nov; 34(11):1317-1322. PubMed ID: 30101833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria.
    Ivnitski D; Artyushkova K; Atanassov P
    Bioelectrochemistry; 2008 Nov; 74(1):101-10. PubMed ID: 18571994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of direct-electron-transfer-type bioelectrocatalysis of bilirubin oxidase by silver ions.
    Makizuka T; Sowa K; Shirai O; Kitazumi Y
    Anal Sci; 2022 Jun; 38(6):907-912. PubMed ID: 35437692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold single-crystal electrode surface modified with self-assembled monolayers for electron tunneling with bilirubin oxidase.
    Tominaga M; Ohtani M; Taniguchi I
    Phys Chem Chem Phys; 2008 Dec; 10(46):6928-34. PubMed ID: 19030587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the interaction between carbon nanotubes and redox enzymes in direct electron transfer-type bioelectrocatalysis.
    Xia HQ; Kitazumi Y; Shirai O; Ozawa H; Onizuka M; Komukai T; Kano K
    Bioelectrochemistry; 2017 Dec; 118():70-74. PubMed ID: 28732287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox potentials of the blue copper sites of bilirubin oxidases.
    Christenson A; Shleev S; Mano N; Heller A; Gorton L
    Biochim Biophys Acta; 2006 Dec; 1757(12):1634-41. PubMed ID: 17020746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilirubin oxidases in bioelectrochemistry: features and recent findings.
    Mano N; Edembe L
    Biosens Bioelectron; 2013 Dec; 50():478-85. PubMed ID: 23911663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.
    Filip J; Andicsová-Eckstein A; Vikartovská A; Tkac J
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):384-389. PubMed ID: 27297188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode.
    Tang J; Yan X; Huang W; Engelbrekt C; Duus JØ; Ulstrup J; Xiao X; Zhang J
    Biosens Bioelectron; 2020 Nov; 167():112500. PubMed ID: 32829175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode.
    So K; Kawai S; Hamano Y; Kitazumi Y; Shirai O; Hibi M; Ogawa J; Kano K
    Phys Chem Chem Phys; 2014 Mar; 16(10):4823-9. PubMed ID: 24469104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells.
    Zeng T; Pankratov D; Falk M; Leimkühler S; Shleev S; Wollenberger U
    Biosens Bioelectron; 2015 Apr; 66():39-42. PubMed ID: 25460879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Structure of Bilirubin Oxidase from
    Gihaz S; Herzallh NS; Cohen Y; Bachar O; Fishman A; Yehezkeli O
    Biosensors (Basel); 2022 Apr; 12(5):. PubMed ID: 35624560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level expression of Myrothecium verrucaria bilirubin oxidase in Pichia pastoris, and its facile purification and characterization.
    Kataoka K; Tanaka K; Sakai Y; Sakurai T
    Protein Expr Purif; 2005 May; 41(1):77-83. PubMed ID: 15802224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction.
    Dos Santos L; Climent V; Blanford CF; Armstrong FA
    Phys Chem Chem Phys; 2010 Nov; 12(42):13962-74. PubMed ID: 20852807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction.
    Lalaoui N; Le Goff A; Holzinger M; Cosnier S
    Chemistry; 2015 Nov; 21(47):16868-73. PubMed ID: 26449635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilirubin Oxidase Adsorption onto Charged Self-Assembled Monolayers: Insights from Multiscale Simulations.
    Yang S; Liu J; Quan X; Zhou J
    Langmuir; 2018 Aug; 34(33):9818-9828. PubMed ID: 30044918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots.
    Zhao M; Gao Y; Sun J; Gao F
    Anal Chem; 2015 Mar; 87(5):2615-22. PubMed ID: 25666266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel electrochemical approach to the characterization of oxidoreductase reactions.
    Ikeda T
    Chem Rec; 2004; 4(3):192-203. PubMed ID: 15293339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.