BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 35594992)

  • 1. Metabolic reprogramming in cholangiocarcinoma.
    Raggi C; Taddei ML; Rae C; Braconi C; Marra F
    J Hepatol; 2022 Sep; 77(3):849-864. PubMed ID: 35594992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifaceted Aspects of Metabolic Plasticity in Human Cholangiocarcinoma: An Overview of Current Perspectives.
    Pastore M; Lori G; Gentilini A; Taddei ML; Di Maira G; Campani C; Recalcati S; Invernizzi P; Marra F; Raggi C
    Cells; 2020 Mar; 9(3):. PubMed ID: 32138158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming.
    Colyn L; Alvarez-Sola G; Latasa MU; Uriarte I; Herranz JM; Arechederra M; Vlachogiannis G; Rae C; Pineda-Lucena A; Casadei-Gardini A; Pedica F; Aldrighetti L; López-López A; López-Gonzálvez A; Barbas C; Ciordia S; Van Liempd SM; Falcón-Pérez JM; Urman J; Sangro B; Vicent S; Iraburu MJ; Prosper F; Nelson LJ; Banales JM; Martinez-Chantar ML; Marin JJG; Braconi C; Trautwein C; Corrales FJ; Cubero FJ; Berasain C; Fernandez-Barrena MG; Avila MA
    J Exp Clin Cancer Res; 2022 May; 41(1):183. PubMed ID: 35619118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance of Bile Acids in Cholangiocarcinoma Pathogenesis: Critical Revision and Future Directions.
    Cossiga V; Guarino M; Capasso M; Morisco F
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma.
    Raggi C; Taddei ML; Sacco E; Navari N; Correnti M; Piombanti B; Pastore M; Campani C; Pranzini E; Iorio J; Lori G; Lottini T; Peano C; Cibella J; Lewinska M; Andersen JB; di Tommaso L; Viganò L; Di Maira G; Madiai S; Ramazzotti M; Orlandi I; Arcangeli A; Chiarugi P; Marra F
    J Hepatol; 2021 Jun; 74(6):1373-1385. PubMed ID: 33484774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SIRT2/cMYC Pathway Inhibits Peroxidation-Related Apoptosis In Cholangiocarcinoma Through Metabolic Reprogramming.
    Xu L; Wang L; Zhou L; Dorfman RG; Pan Y; Tang D; Wang Y; Yin Y; Jiang C; Zou X; Wu J; Zhang M
    Neoplasia; 2019 May; 21(5):429-441. PubMed ID: 30933885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic reprogramming and its clinical implication for liver cancer.
    Yang F; Hilakivi-Clarke L; Shaha A; Wang Y; Wang X; Deng Y; Lai J; Kang N
    Hepatology; 2023 Nov; 78(5):1602-1624. PubMed ID: 36626639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker.
    Utispan K; Thuwajit P; Abiko Y; Charngkaew K; Paupairoj A; Chau-in S; Thuwajit C
    Mol Cancer; 2010 Jan; 9():13. PubMed ID: 20096135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical presentation, diagnosis and staging of cholangiocarcinoma.
    Forner A; Vidili G; Rengo M; Bujanda L; Ponz-Sarvisé M; Lamarca A
    Liver Int; 2019 May; 39 Suppl 1():98-107. PubMed ID: 30831002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2.
    Liu R; Zhao R; Zhou X; Liang X; Campbell DJ; Zhang X; Zhang L; Shi R; Wang G; Pandak WM; Sirica AE; Hylemon PB; Zhou H
    Hepatology; 2014 Sep; 60(3):908-18. PubMed ID: 24700501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protease-inhibitor SerpinB3 as a critical modulator of the stem-like subset in human cholangiocarcinoma.
    Correnti M; Cappon A; Pastore M; Piombanti B; Lori G; Oliveira DVPN; Munoz-Garrido P; Lewinska M; Andersen JB; Coulouarn C; Sulpice L; Peraldo Neia C; Cavalloni G; Quarta S; Biasiolo A; Fassan M; Ramazzotti M; Parri M; Recalcati S; di Tommaso L; Campani C; Invernizzi P; Torzilli G; Marra F; Pontisso P; Raggi C
    Liver Int; 2022 Jan; 42(1):233-248. PubMed ID: 34478594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin-1.
    Thamrongwaranggoon U; Kuribayashi K; Araki H; Hino Y; Koga T; Seubwai W; Wongkham S; Nakao M; Hino S
    Cancer Sci; 2023 Apr; 114(4):1541-1555. PubMed ID: 36562400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression.
    Erice O; Labiano I; Arbelaiz A; Santos-Laso A; Munoz-Garrido P; Jimenez-Agüero R; Olaizola P; Caro-Maldonado A; Martín-Martín N; Carracedo A; Lozano E; Marin JJ; O'Rourke CJ; Andersen JB; Llop J; Gómez-Vallejo V; Padro D; Martin A; Marzioni M; Adorini L; Trauner M; Bujanda L; Perugorria MJ; Banales JM
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt B):1335-1344. PubMed ID: 28916388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts.
    Raggi C; Invernizzi P; Andersen JB
    J Hepatol; 2015 Jan; 62(1):198-207. PubMed ID: 25220250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholangiocarcinoma Prognosis Varies over Time Depending on Tumor Site and Pathology.
    Kaneko R; Sato Y; Kobayashi Y
    J Gastrointestin Liver Dis; 2018 Mar; 27(1):59-66. PubMed ID: 29557416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway.
    Shen H; Zhang J; Zhang Y; Feng Q; Wang H; Li G; Jiang W; Li X
    Gene; 2019 May; 698():50-60. PubMed ID: 30822475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect.
    Dan Li ; Wang C; Ma P; Yu Q; Gu M; Dong L; Jiang W; Pan S; Xie C; Han J; Lan Y; Sun J; Sheng P; Liu K; Wu Y; Liu L; Ma Y; Jiang H
    Cell Death Dis; 2018 May; 9(5):466. PubMed ID: 29700317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tumour microenvironment: a new vision for cholangiocarcinoma.
    Chen Z; Guo P; Xie X; Yu H; Wang Y; Chen G
    J Cell Mol Med; 2019 Jan; 23(1):59-69. PubMed ID: 30394682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MET‑RON dual inhibitor, BMS‑777607, suppresses cholangiocarcinoma cell growth, and MET‑RON upregulation indicates worse prognosis for intra‑hepatic cholangiocarcinoma patients.
    Cheng CT; Chen YY; Wu RC; Tsai CY; Chiang KC; Yeh TS; Chen MH; Yeh CN
    Oncol Rep; 2018 Sep; 40(3):1411-1421. PubMed ID: 30015968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways.
    Kongpetch S; Jusakul A; Ong CK; Lim WK; Rozen SG; Tan P; Teh BT
    Best Pract Res Clin Gastroenterol; 2015 Apr; 29(2):233-44. PubMed ID: 25966424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.