These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35595082)
1. SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening. Vanhulle E; Stroobants J; Provinciael B; Camps A; Noppen S; Maes P; Vermeire K Antiviral Res; 2022 Jul; 203():105342. PubMed ID: 35595082 [TBL] [Abstract][Full Text] [Related]
2. A Newly Engineered A549 Cell Line Expressing ACE2 and TMPRSS2 Is Highly Permissive to SARS-CoV-2, Including the Delta and Omicron Variants. Chang CW; Parsi KM; Somasundaran M; Vanderleeden E; Liu P; Cruz J; Cousineau A; Finberg RW; Kurt-Jones EA Viruses; 2022 Jun; 14(7):. PubMed ID: 35891350 [TBL] [Abstract][Full Text] [Related]
3. Carbohydrate-binding protein from stinging nettle as fusion inhibitor for SARS-CoV-2 variants of concern. Vanhulle E; D'huys T; Provinciael B; Stroobants J; Camps A; Noppen S; Schols D; Van Damme EJM; Maes P; Stevaert A; Vermeire K Front Cell Infect Microbiol; 2022; 12():989534. PubMed ID: 36111239 [No Abstract] [Full Text] [Related]
4. Identification of SARS-CoV-2 Receptor Binding Inhibitors by In Vitro Screening of Drug Libraries. David AB; Diamant E; Dor E; Barnea A; Natan N; Levin L; Chapman S; Mimran LC; Epstein E; Zichel R; Torgeman A Molecules; 2021 May; 26(11):. PubMed ID: 34072087 [TBL] [Abstract][Full Text] [Related]
5. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. Busnadiego I; Fernbach S; Pohl MO; Karakus U; Huber M; Trkola A; Stertz S; Hale BG mBio; 2020 Sep; 11(5):. PubMed ID: 32913009 [TBL] [Abstract][Full Text] [Related]
6. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding. Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700 [TBL] [Abstract][Full Text] [Related]
8. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018 [TBL] [Abstract][Full Text] [Related]
10. Withanone from Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804 [TBL] [Abstract][Full Text] [Related]
11. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
12. Repositioning of histamine H Ge S; Wang X; Hou Y; Lv Y; Wang C; He H Eur J Pharmacol; 2021 Apr; 896():173897. PubMed ID: 33497607 [TBL] [Abstract][Full Text] [Related]
13. Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein. Khan SA; Khan A; Zia K; Shawish I; Barakat A; Ul-Haq Z Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142242 [TBL] [Abstract][Full Text] [Related]
14. Characterization of SARS-CoV-2 replication in human H1299/ACE2 cells: A versatile and practical infection model for antiviral research and beyond. Salgado-Benvindo C; Tas A; Zevenhoven-Dobbe JC; van der Meer Y; Sidorov IA; Leijs AA; Wanningen P; Gelderloos AT; van Kasteren PB; Snijder EJ; van Hemert MJ Antiviral Res; 2024 Jul; 227():105903. PubMed ID: 38723907 [TBL] [Abstract][Full Text] [Related]
15. Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals. Hayashi T; Abiko K; Mandai M; Yaegashi N; Konishi I Vet Q; 2020 Dec; 40(1):243-249. PubMed ID: 32921279 [TBL] [Abstract][Full Text] [Related]
16. Soluble wild-type ACE2 molecules inhibit newer SARS-CoV-2 variants and are a potential antiviral strategy to mitigate disease severity in COVID-19. Ameratunga R; Mears E; Leung E; Snell R; Woon ST; Kelton W; Medlicott N; Jordan A; Abbott W; Steele R; Rolleston W; Longhurst H; Lehnert K Clin Exp Immunol; 2023 Dec; 214(3):289-295. PubMed ID: 37565297 [TBL] [Abstract][Full Text] [Related]
17. Ganoderma microsporum immunomodulatory protein acts as a multifunctional broad-spectrum antiviral against SARS-CoV-2 by interfering virus binding to the host cells and spike-mediated cell fusion. Ho HPT; Vo DNK; Lin TY; Hung JN; Chiu YH; Tsai MH Biomed Pharmacother; 2022 Nov; 155():113766. PubMed ID: 36271550 [TBL] [Abstract][Full Text] [Related]
18. Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells. Kapczynski DR; Sweeney R; Spackman E; Pantin-Jackwood M; Suarez DL Virology; 2022 Apr; 569():1-12. PubMed ID: 35217403 [TBL] [Abstract][Full Text] [Related]
19. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. Ren W; Ju X; Gong M; Lan J; Yu Y; Long Q; Kenney DJ; O'Connell AK; Zhang Y; Zhong J; Zhong G; Douam F; Wang X; Huang A; Zhang R; Ding Q mBio; 2022 Apr; 13(2):e0009922. PubMed ID: 35266815 [TBL] [Abstract][Full Text] [Related]
20. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer. Bharathi M; Sivamaruthi BS; Kesika P; Thangaleela S; Chaiyasut C Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]