These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3559517)

  • 1. Cell suspensions from porcine olfactory mucosa. Changes in membrane potential and membrane fluidity in response to various odorants.
    Kashiwayanagi M; Sai K; Kurihara K
    J Gen Physiol; 1987 Mar; 89(3):443-57. PubMed ID: 3559517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for non-receptor odor discrimination using neuroblastoma cells as a model for olfactory cells.
    Kashiwayanagi M; Kurihara K
    Brain Res; 1985 Dec; 359(1-2):97-103. PubMed ID: 4075164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration and membrane fluidity dependence of odor discrimination in the turtle olfactory system.
    Kashiwayanagi M; Sasaki K; Iida A; Saito H; Kurihara K
    Chem Senses; 1997 Oct; 22(5):553-63. PubMed ID: 9363355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposomes as a model for olfactory cells: changes in membrane potential in response to various odorants.
    Nomura T; Kurihara K
    Biochemistry; 1987 Sep; 26(19):6135-40. PubMed ID: 3689767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroblastoma cell as model for olfactory cell: mechanism of depolarization in response to various odorants.
    Kashiwayanagi M; Kurihara K
    Brain Res; 1984 Feb; 293(2):251-8. PubMed ID: 6607764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane fluidity changes of liposomes in response to various odorants. Complexity of membrane composition and variety of adsorption sites for odorants.
    Kashiwayanagi M; Suenaga A; Enomoto S; Kurihara K
    Biophys J; 1990 Oct; 58(4):887-95. PubMed ID: 2248993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in membrane potential and membrane fluidity in Tetrahymena pyriformis in association with chemoreception of hydrophobic stimuli: fluorescence studies.
    Tanabe H; Kurihara K; Kobatake Y
    Biochemistry; 1980 Nov; 19(23):5339-44. PubMed ID: 6778505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial patterning of response to odors in the peripheral olfactory system.
    Moulton DG
    Physiol Rev; 1976 Jul; 56(3):578-93. PubMed ID: 778869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Smell: the unappreciated human sense].
    Potargowicz E
    Postepy Hig Med Dosw (Online); 2008 Feb; 62():87-93. PubMed ID: 18305448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of Nitella internodal cell to chemical stimulation. A model for olfactory receptor system.
    Ueda T; Kurihara K; Kobatake Y
    J Membr Biol; 1975-1976; 25(3-4):271-84. PubMed ID: 1235804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The participation of the cAMP intracellular signal system in the olfactory transduction of camphor and amyl alcohol].
    Bigdaĭ EV; Samoĭlov VO; Komarov AN
    Ross Fiziol Zh Im I M Sechenova; 1999 Mar; 85(3):412-8. PubMed ID: 10494592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and cellular basis of human olfaction.
    Hatt H
    Chem Biodivers; 2004 Dec; 1(12):1857-69. PubMed ID: 17191824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Heterogeneity of molecular mechanisms the olfactor reception].
    Bigdaĭ EV
    Ross Fiziol Zh Im I M Sechenova; 2004 Jun; 90(6):790-800. PubMed ID: 15335169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liposomes having high sensitivity to odorants.
    Enomoto S; Kashiwayanagi M; Kurihara K
    Biochim Biophys Acta; 1991 Feb; 1062(1):7-12. PubMed ID: 1998711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.
    Delgado R; Saavedra MV; Schmachtenberg O; Sierralta J; Bacigalupo J
    J Neurophysiol; 2003 Sep; 90(3):2022-8. PubMed ID: 12801890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coacervate-like membrane structures and olfactory transduction.
    Sperber GO
    Acta Physiol Scand; 1977 Feb; 99(2):129-39. PubMed ID: 842369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of the rat olfactory epithelium to retronasal air flow.
    Scott JW; Acevedo HP; Sherrill L; Phan M
    J Neurophysiol; 2007 Mar; 97(3):1941-50. PubMed ID: 17215498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemical modification approach to the olfactory code: vapor phase labeling using photoaffinity odorants.
    Menevşe S; Menevşe A
    Jpn J Physiol; 1989; 39(5):779-84. PubMed ID: 2615038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic mechanisms of the olfactory transduction studied on isolated receptor cells of the newt.
    Kurahashi T; Kaneko A; Shibuya T
    Neurosci Res Suppl; 1990; 12():S85-96. PubMed ID: 2123021
    [No Abstract]   [Full Text] [Related]  

  • 20. Topographic coding of olfactory quality: odorant-specific patterns of epithelial responsivity in the salamander.
    Mackay-Sim A; Shaman P; Moulton DG
    J Neurophysiol; 1982 Aug; 48(2):584-96. PubMed ID: 7119863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.