BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35595290)

  • 1. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light.
    Long SP; Taylor SH; Burgess SJ; Carmo-Silva E; Lawson T; De Souza AP; Leonelli L; Wang Y
    Annu Rev Plant Biol; 2022 May; 73():617-648. PubMed ID: 35595290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity.
    Taylor SH; Long SP
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity?
    Wang Y; Burgess SJ; de Becker EM; Long SP
    Plant J; 2020 Feb; 101(4):874-884. PubMed ID: 31908116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light.
    De Souza AP; Wang Y; Orr DJ; Carmo-Silva E; Long SP
    New Phytol; 2020 Mar; 225(6):2498-2512. PubMed ID: 31446639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops.
    Taylor SH; Orr DJ; Carmo-Silva E; Long SP
    Plant Cell Environ; 2020 Nov; 43(11):2623-2636. PubMed ID: 32740963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in photosynthetic induction between rice accessions and its potential for improving productivity.
    Acevedo-Siaca LG; Coe R; Wang Y; Kromdijk J; Quick WP; Long SP
    New Phytol; 2020 Aug; 227(4):1097-1108. PubMed ID: 32124982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions.
    Taylor SH; Gonzalez-Escobar E; Page R; Parry MAJ; Long SP; Carmo-Silva E
    Nat Plants; 2022 Feb; 8(2):118-124. PubMed ID: 35058608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis.
    Martins SC; Galmés J; Cavatte PC; Pereira LF; Ventrella MC; Damatta FM
    PLoS One; 2014; 9(4):e95571. PubMed ID: 24743509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks.
    Campany CE; Tjoelker MG; von Caemmerer S; Duursma RA
    Plant Cell Environ; 2016 Dec; 39(12):2762-2773. PubMed ID: 27726150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthesis research under climate change.
    Hussain S; Ulhassan Z; Brestic M; Zivcak M; Weijun Zhou ; Allakhverdiev SI; Yang X; Safdar ME; Yang W; Liu W
    Photosynth Res; 2021 Dec; 150(1-3):5-19. PubMed ID: 34235625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea.
    Snir A; Gurevitz M; Marcus Y
    Photosynth Res; 2006 Dec; 90(3):233-42. PubMed ID: 17286188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Rubisco and its regulation for greater resource use efficiency.
    Carmo-Silva E; Scales JC; Madgwick PJ; Parry MA
    Plant Cell Environ; 2015 Sep; 38(9):1817-32. PubMed ID: 25123951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic modelling of limitations on improving leaf CO
    Morales A; Kaiser E; Yin X; Harbinson J; Molenaar J; Driever SM; Struik PC
    Plant Cell Environ; 2018 Mar; 41(3):589-604. PubMed ID: 29243271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone.
    Urban O; Kosvancová M; Marek MV; Lichtenthaler HK
    Tree Physiol; 2007 Aug; 27(8):1207-15. PubMed ID: 17472946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis.
    Yoshimura K
    Plant Cell Environ; 2010 May; 33(5):750-8. PubMed ID: 20519020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.
    Terashima I; Hanba YT; Tazoe Y; Vyas P; Yano S
    J Exp Bot; 2006; 57(2):343-54. PubMed ID: 16356943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.
    Herrick JD; Thomas RB
    Tree Physiol; 2003 Feb; 23(2):109-18. PubMed ID: 12533305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.
    Yamori W; Masumoto C; Fukayama H; Makino A
    Plant J; 2012 Sep; 71(6):871-80. PubMed ID: 22563799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation.
    Iio A; Fukasawa H; Nose Y; Kato S; Kakubari Y
    Tree Physiol; 2005 May; 25(5):533-44. PubMed ID: 15741146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.