These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35595367)
1. Sweat urea bioassay based on degradation of Prussian Blue as the sensing architecture. Salatiello S; Spinelli M; Cassiano C; Amoresano A; Marini F; Cinti S Anal Chim Acta; 2022 Jun; 1210():339882. PubMed ID: 35595367 [TBL] [Abstract][Full Text] [Related]
2. A hydrogel sensor based on cellulose nanofiber/polyvinyl alcohol with colorimetric-fluorescent bimodality for non-invasive detection of urea in sweat. Quan Z; Chen Z; Li H; Sun S; Xu Y Int J Biol Macromol; 2024 Sep; 276(Pt 1):133760. PubMed ID: 39013510 [TBL] [Abstract][Full Text] [Related]
3. Thermal wet decomposition of Prussian Blue: implications for prebiotic chemistry. Ruiz-Bermejo M; Rogero C; Menor-Salván C; Osuna-Esteban S; Martín-Gago JA; Veintemillas-Verdaguer S Chem Biodivers; 2009 Sep; 6(9):1309-22. PubMed ID: 19774593 [TBL] [Abstract][Full Text] [Related]
4. Highly catalytic Prussian blue analogues and their application on the three-dimensional origami paper-based sweat sensors. Chen WT; Yan CF; Yu CJ; Liao YC; Chen CF Biosens Bioelectron; 2024 Jun; 254():116188. PubMed ID: 38484412 [TBL] [Abstract][Full Text] [Related]
5. More Efficient Prussian Blue Nanoparticles for an Improved Caesium Decontamination from Aqueous Solutions and Biological Fluids. Carniato F; Gatti G; Vittoni C; Katsev AM; Guidotti M; Evangelisti C; Bisio C Molecules; 2020 Jul; 25(15):. PubMed ID: 32751159 [TBL] [Abstract][Full Text] [Related]
6. A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Bagheri N; Cinti S; Caratelli V; Massoud R; Saraji M; Moscone D; Arduini F Biosens Bioelectron; 2019 Jun; 134():97-102. PubMed ID: 30959394 [TBL] [Abstract][Full Text] [Related]
7. Long-term stability study of Prussian blue-A quality assessment of water content and cyanide release. Mohammad A; Yang Y; Khan MA; Faustino PJ Clin Toxicol (Phila); 2015 Feb; 53(2):102-7. PubMed ID: 25608705 [TBL] [Abstract][Full Text] [Related]
8. A sensitive photothermometric biosensor based on redox reaction-controlled nanoprobe conversion from Prussian blue to Prussian white. Zhang X; Rao H; Huang H; Zhang K; Wei M; Luo M; Xue X; Xue Z; Lu X Anal Bioanal Chem; 2021 Nov; 413(26):6627-6637. PubMed ID: 34476525 [TBL] [Abstract][Full Text] [Related]
9. A choline oxidase amperometric bioassay for the detection of mustard agents based on screen-printed electrodes modified with Prussian Blue nanoparticles. Arduini F; Scognamiglio V; Covaia C; Amine A; Moscone D; Palleschi G Sensors (Basel); 2015 Feb; 15(2):4353-67. PubMed ID: 25688587 [TBL] [Abstract][Full Text] [Related]
10. Prussian Blue (bio)sensing device for distance-based measurements. Granica M; Tymecki Ł Anal Chim Acta; 2020 Nov; 1136():125-133. PubMed ID: 33081936 [TBL] [Abstract][Full Text] [Related]
11. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Fan S; Jiang X; Yang M; Wang X Anal Bioanal Chem; 2021 Jun; 413(15):3955-3963. PubMed ID: 33885935 [TBL] [Abstract][Full Text] [Related]
12. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Promphet N; Rattanawaleedirojn P; Siralertmukul K; Soatthiyanon N; Potiyaraj P; Thanawattano C; Hinestroza JP; Rodthongkum N Talanta; 2019 Jan; 192():424-430. PubMed ID: 30348413 [TBL] [Abstract][Full Text] [Related]
13. Urea transporters and sweat response to uremia. Keller RW; Bailey JL; Wang Y; Klein JD; Sands JM Physiol Rep; 2016 Jun; 4(11):. PubMed ID: 27273880 [TBL] [Abstract][Full Text] [Related]
14. Sweat lactate, ammonia, and urea in rugby players. Alvear-Ordenes I; García-López D; De Paz JA; González-Gallego J Int J Sports Med; 2005 Oct; 26(8):632-7. PubMed ID: 16158367 [TBL] [Abstract][Full Text] [Related]
15. Hollow Prussian Blue nanocubes as peroxidase mimetic and enzyme carriers for colorimetric determination of ethanol. Wang S; Yan H; Wang Y; Wang N; Lin Y; Li M Mikrochim Acta; 2019 Nov; 186(11):738. PubMed ID: 31676959 [TBL] [Abstract][Full Text] [Related]
16. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles. Xue X; Gao M; Rao H; Luo M; Wang H; An P; Feng T; Lu X; Xue Z; Liu X Anal Chim Acta; 2020 Apr; 1105():197-207. PubMed ID: 32138919 [TBL] [Abstract][Full Text] [Related]
17. Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display. Zloczewska A; Celebanska A; Szot K; Tomaszewska D; Opallo M; Jönsson-Niedziolka M Biosens Bioelectron; 2014 Apr; 54():455-61. PubMed ID: 24321882 [TBL] [Abstract][Full Text] [Related]
18. The interaction of Prussian blue and dissolved hexacyanoferrate ions with goethite (alpha-FeOOH) studied to assess the chemical stability and physical mobility of Prussian blue in soils. Scholz F; Schwudke D; Stösser R; Bohácek J Ecotoxicol Environ Saf; 2001 Jul; 49(3):245-54. PubMed ID: 11440478 [TBL] [Abstract][Full Text] [Related]
19. Colorimetric sensing of chloride in sweat based on fluorescence wavelength shift via halide exchange of CsPbBr Li F; Feng Y; Huang Y; Yao Q; Huang G; Zhu Y; Chen X Mikrochim Acta; 2021 Jan; 188(1):2. PubMed ID: 33387052 [TBL] [Abstract][Full Text] [Related]
20. Uric acid and urea in human sweat. Huang CT; Chen ML; Huang LL; Mao IF Chin J Physiol; 2002 Sep; 45(3):109-15. PubMed ID: 12817713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]