These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35595367)
21. Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea via pH-mediated AgNPs growth. Choi CK; Shaban SM; Moon BS; Pyun DG; Kim DH Anal Chim Acta; 2021 Jul; 1170():338630. PubMed ID: 34090590 [TBL] [Abstract][Full Text] [Related]
22. [Excretion of nitrogen compounds in sweat during a sauna]. Czarnowski D; Górski J Pol Tyg Lek; 1991 Feb 18-Mar 4; 46(8-10):186-7. PubMed ID: 1845745 [TBL] [Abstract][Full Text] [Related]
23. An In Situ Generated Prussian Blue Nanoparticle-Mediated Multimode Nanozyme-Linked Immunosorbent Assay for the Detection of Aflatoxin B1. Lu D; Jiang H; Zhang G; Luo Q; Zhao Q; Shi X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25738-25747. PubMed ID: 34043909 [TBL] [Abstract][Full Text] [Related]
24. Sweat urea, uric acid and creatinine concentrations in uraemic patients. al-Tamer YY; Hadi EA; al-Badrani II Urol Res; 1997; 25(5):337-40. PubMed ID: 9373914 [TBL] [Abstract][Full Text] [Related]
25. Enzymatic determination of urea in milk by sequential injection with spectrophotometric and conductometric detection. Lima MJ; Fernandes SM; Rangel AO J Agric Food Chem; 2004 Nov; 52(23):6887-90. PubMed ID: 15537291 [TBL] [Abstract][Full Text] [Related]
26. Metabolite Biometrics for the Differentiation of Individuals. Hair ME; Mathis AI; Brunelle EK; Halámková L; Halámek J Anal Chem; 2018 Apr; 90(8):5322-5328. PubMed ID: 29561130 [TBL] [Abstract][Full Text] [Related]
27. Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes. Wu T; Hou W; Ma Z; Liu M; Liu X; Zhang Y; Yao S Mikrochim Acta; 2019 Jan; 186(2):123. PubMed ID: 30666555 [TBL] [Abstract][Full Text] [Related]
28. Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor. Cinti S; Cusenza R; Moscone D; Arduini F Talanta; 2018 Sep; 187():59-64. PubMed ID: 29853066 [TBL] [Abstract][Full Text] [Related]
29. Comparison of Colorimetric Analyses to Determine Cortisol in Human Sweat. Tu E; Pearlmutter P; Tiangco M; Derose G; Begdache L; Koh A ACS Omega; 2020 Apr; 5(14):8211-8218. PubMed ID: 32309731 [TBL] [Abstract][Full Text] [Related]
30. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion. Hong G; Zhang D; He Y; Yang Y; Chen P; Yang H; Zhou Z; Liu Y; Wang Y Anal Bioanal Chem; 2019 Oct; 411(26):6837-6845. PubMed ID: 31471682 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of gold coated magnetic microparticles and their application for electrochemical glucose sensing by the enzymatically precipitated prussian blue. Jung HY; Park JH; Hwang S; Kwak J J Biomed Nanotechnol; 2013 May; 9(5):901-6. PubMed ID: 23802422 [TBL] [Abstract][Full Text] [Related]
32. Smart Janus fabrics for one-way sweat sampling and skin-friendly colorimetric detection. Xi P; He X; Fan C; Zhu Q; Li Z; Yang Y; Du X; Xu T Talanta; 2023 Jul; 259():124507. PubMed ID: 37058940 [TBL] [Abstract][Full Text] [Related]
33. In Situ Generation of Prussian Blue by MIL-53 (Fe) for Point-of-Care Testing of Butyrylcholinesterase Activity Using a Portable High-Throughput Photothermal Device. Guo L; Zhang YJ; Yu YL; Wang JH Anal Chem; 2020 Nov; 92(21):14806-14813. PubMed ID: 33058681 [TBL] [Abstract][Full Text] [Related]
34. Hierarchically superstructured prussian blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials. Yue Y; Zhang Z; Binder AJ; Chen J; Jin X; Overbury SH; Dai S ChemSusChem; 2015 Jan; 8(1):177-83. PubMed ID: 25385481 [TBL] [Abstract][Full Text] [Related]
35. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Zhang D; Zhang K; Yao YL; Xia XH; Chen HY Langmuir; 2004 Aug; 20(17):7303-7. PubMed ID: 15301519 [TBL] [Abstract][Full Text] [Related]
36. Porous Prussian Blue Nanocubes as Photothermal Ablation Agents for Efficient Cancer Therapy. Xue P; Bao J; Wu Y; Zhang Y; Kang Y J Nanosci Nanotechnol; 2017 Jan; 17(1):168-74. PubMed ID: 29617098 [TBL] [Abstract][Full Text] [Related]
37. Wearable healthcare smart electrochemical biosensors based on co-assembled prussian blue-graphene film for glucose sensing. Ma J; Du Y; Jiang Y; Shen L; Ma H; Lv F; Cui Z; Pan Y; Shi L; Zhu N Mikrochim Acta; 2022 Jan; 189(1):46. PubMed ID: 34985727 [TBL] [Abstract][Full Text] [Related]
38. Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga. Jahn MK; Haderlein SB; Meckenstock RU Environ Microbiol; 2006 Feb; 8(2):362-7. PubMed ID: 16423022 [TBL] [Abstract][Full Text] [Related]
39. Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes. Wang Z; Yang H; Gao B; Tong Y; Zhang X; Su L Analyst; 2014 Mar; 139(5):1127-33. PubMed ID: 24416762 [TBL] [Abstract][Full Text] [Related]
40. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium. Hu B; Fugetsu B; Yu H; Abe Y J Hazard Mater; 2012 May; 217-218():85-91. PubMed ID: 22464752 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]