These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35595534)

  • 1. GASS-Metal: identifying metal-binding sites on protein structures using genetic algorithms.
    Paiva VA; Mendonça MV; Silveira SA; Ascher DB; Pires DEV; Izidoro SC
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35595534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GASS-WEB: a web server for identifying enzyme active sites based on genetic algorithms.
    Moraes JPA; Pappa GL; Pires DEV; Izidoro SC
    Nucleic Acids Res; 2017 Jul; 45(W1):W315-W319. PubMed ID: 28459991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GASS: identifying enzyme active sites with genetic algorithms.
    Izidoro SC; de Melo-Minardi RC; Pappa GL
    Bioinformatics; 2015 Mar; 31(6):864-70. PubMed ID: 25388152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mFASD: a structure-based algorithm for discriminating different types of metal-binding sites.
    He W; Liang Z; Teng M; Niu L
    Bioinformatics; 2015 Jun; 31(12):1938-44. PubMed ID: 25649619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information.
    Qiao L; Xie D
    Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MIB: Metal Ion-Binding Site Prediction and Docking Server.
    Lin YF; Cheng CW; Shih CS; Hwang JK; Yu CS; Lu CH
    J Chem Inf Model; 2016 Dec; 56(12):2287-2291. PubMed ID: 27976886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.
    Valasatava Y; Rosato A; Cavallaro G; Andreini C
    J Biol Inorg Chem; 2014 Aug; 19(6):937-45. PubMed ID: 24699831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BioMetAll: Identifying Metal-Binding Sites in Proteins from Backbone Preorganization.
    Sánchez-Aparicio JE; Tiessler-Sala L; Velasco-Carneros L; Roldán-Martín L; Sciortino G; Maréchal JD
    J Chem Inf Model; 2021 Jan; 61(1):311-323. PubMed ID: 33337144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MIB2: metal ion-binding site prediction and modeling server.
    Lu CH; Chen CC; Yu CS; Liu YY; Liu JJ; Wei ST; Lin YF
    Bioinformatics; 2022 Sep; 38(18):4428-4429. PubMed ID: 35904542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. M-Ionic: prediction of metal-ion-binding sites from sequence using residue embeddings.
    Shenoy A; Kalakoti Y; Sundar D; Elofsson A
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetalPDB: a database of metal sites in biological macromolecular structures.
    Andreini C; Cavallaro G; Lorenzini S; Rosato A
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D312-9. PubMed ID: 23155064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prediction and characterization of metal binding sites in proteins.
    Gregory DS; Martin AC; Cheetham JC; Rees AR
    Protein Eng; 1993 Jan; 6(1):29-35. PubMed ID: 8433968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alignment-free metal ion-binding site prediction from protein sequence through pretrained language model and multi-task learning.
    Yuan Q; Chen S; Wang Y; Zhao H; Yang Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36274238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of metal ion-binding sites in RNA structures using deep learning method.
    Zhao Y; Wang J; Chang F; Gong W; Liu Y; Li C
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36772993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning differentiates enzymatic and non-enzymatic metals in proteins.
    Feehan R; Franklin MW; Slusky JSG
    Nat Commun; 2021 Jun; 12(1):3712. PubMed ID: 34140507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of tools and database for analysis of metal binding sites in protein.
    Kuntal BK; Aparoy P; Reddanna P
    Protein Pept Lett; 2010 Jun; 17(6):765-73. PubMed ID: 20205657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive geometric search algorithm for macromolecular scaffold selection.
    Jiang T; Renfrew PD; Drew K; Youngs N; Butterfoss GL; Bonneau R; Shasha DN
    Protein Eng Des Sel; 2018 Sep; 31(9):345-354. PubMed ID: 30407584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FINDSITE-metal: integrating evolutionary information and machine learning for structure-based metal-binding site prediction at the proteome level.
    Brylinski M; Skolnick J
    Proteins; 2011 Mar; 79(3):735-51. PubMed ID: 21287609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.