These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35595574)

  • 61. CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection.
    Gong S; Zhang S; Lu F; Pan W; Li N; Tang B
    Anal Chem; 2021 Sep; 93(35):11899-11909. PubMed ID: 34427091
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CRISPR-based diagnostics for detection of pathogens.
    Bhattacharjee G; Gohil N; Lam NL; Singh V
    Prog Mol Biol Transl Sci; 2021; 181():45-57. PubMed ID: 34127201
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Applications of CRISPR/Cas gene-editing technology in yeast and fungi.
    Liao B; Chen X; Zhou X; Zhou Y; Shi Y; Ye X; Liao M; Zhou Z; Cheng L; Ren B
    Arch Microbiol; 2021 Dec; 204(1):79. PubMed ID: 34954815
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [CRISPR/Cas-based genome editing in Aspergillus niger].
    Zheng X; Zheng P; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):980-990. PubMed ID: 33783162
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research.
    Pandey PK; Quilichini TD; Vaid N; Gao P; Xiang D; Datla R
    Semin Cell Dev Biol; 2019 Dec; 96():107-114. PubMed ID: 31022459
    [TBL] [Abstract][Full Text] [Related]  

  • 66. How to detect CRISPR with CRISPR - employing SHERLOCK for doping control purposes.
    Paßreiter A; Naumann N; Thomas A; Grogna N; Delahaut P; Thevis M
    Analyst; 2022 Nov; 147(23):5528-5536. PubMed ID: 36341480
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent Advances in the Production of Genome-Edited Rats.
    Sato M; Nakamura S; Inada E; Takabayashi S
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269691
    [TBL] [Abstract][Full Text] [Related]  

  • 68. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Point-of-Care Pathogen Detection with CRISPR-based Programmable Nucleic Acid Binding Proteins.
    Dhar BC; Steimberg N; Mazzoleni G
    ChemMedChem; 2021 May; 16(10):1566-1575. PubMed ID: 33258314
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recent Advances in CRISPR-Based Biosensors for Point-of-Care Pathogen Detection.
    Mohammad N; Katkam SS; Wei Q
    CRISPR J; 2022 Aug; 5(4):500-516. PubMed ID: 35856644
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis.
    Chen K; Shen Z; Wang G; Gu W; Zhao S; Lin Z; Liu W; Cai Y; Mushtaq G; Jia J; Wan CC; Yan T
    Front Bioeng Biotechnol; 2022; 10():986233. PubMed ID: 36185462
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review.
    Habimana JD; Huang R; Muhoza B; Kalisa YN; Han X; Deng W; Li Z
    Biosens Bioelectron; 2022 May; 203():114033. PubMed ID: 35131696
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management.
    Karmakar S; Das P; Panda D; Xie K; Baig MJ; Molla KA
    Plant Sci; 2022 Oct; 323():111376. PubMed ID: 35835393
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A warm-start digital CRISPR/Cas-based method for the quantitative detection of nucleic acids.
    Wu X; Chan C; Springs SL; Lee YH; Lu TK; Yu H
    Anal Chim Acta; 2022 Mar; 1196():339494. PubMed ID: 35151407
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CRISPR-Cas Biology and Its Application to Infectious Diseases.
    Strich JR; Chertow DS
    J Clin Microbiol; 2019 Apr; 57(4):. PubMed ID: 30429256
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research.
    Palaz F; Kalkan AK; Can Ö; Demir AN; Tozluyurt A; Özcan A; Ozsoz M
    ACS Synth Biol; 2021 Jun; 10(6):1245-1267. PubMed ID: 34037380
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CRISPR-Cas-mediated gene editing in lactic acid bacteria.
    Song X; Zhang XY; Xiong ZQ; Liu XX; Xia YJ; Wang SJ; Ai LZ
    Mol Biol Rep; 2020 Oct; 47(10):8133-8144. PubMed ID: 32926267
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules.
    Singh R; Chandel S; Ghosh A; Dey D; Chakravarti R; Roy S; Ravichandiran V; Ghosh D
    Mol Biotechnol; 2021 Jun; 63(6):459-476. PubMed ID: 33774733
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CRISPR/Cas systems versus plant viruses: engineering plant immunity and beyond.
    Ali Z; Mahfouz MM
    Plant Physiol; 2021 Aug; 186(4):1770-1785. PubMed ID: 35237805
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.