BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35595907)

  • 1. Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica.
    Ahmed HU; Mohammed AS; Mohammed AA
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71232-71256. PubMed ID: 35595907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical Methods for Modeling the Compressive Strength of Geopolymer Mortar.
    Ahmed HU; Abdalla AA; Mohammed AS; Mohammed AA; Mosavi A
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete.
    Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive Strength Estimation of Geopolymer Composites through Novel Computational Approaches.
    Amin MN; Khan K; Ahmad W; Javed MF; Qureshi HJ; Saleem MU; Qadir MG; Faraz MI
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
    Dao DV; Ly HB; Trinh SH; Le TT; Pham BT
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Analysis of Geopolymer Materials: Properties, Environmental Impacts, and Applications.
    Sbahieh S; McKay G; Al-Ghamdi SG
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete.
    Gunasekara C; Atzarakis P; Lokuge W; Law DW; Setunge S
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance to Sulfuric Acid Corrosion of Geopolymer Concrete Based on Different Binding Materials and Alkali Concentrations.
    Yang W; Zhu P; Liu H; Wang X; Ge W; Hua M
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Mechanical Properties of Quick-Strength Geopolymer Material Considering Preheated-to-Room Temperature Ratio of Sand, Na
    Bhina MR; Liu KY; Hu JH; Tsai CT
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm.
    Shah HA; Nehdi ML; Khan MI; Akmal U; Alabduljabbar H; Mohamed A; Sheraz M
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study on the properties of ultra-high-strength geopolymer concrete with polypropylene fibers and nano-silica.
    Althoey F; Zaid O; Alsulamy S; Martínez-García R; de Prado-Gil J; Arbili MM
    PLoS One; 2023; 18(4):e0282435. PubMed ID: 37079561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Gene Expression Programming (GEP) for the Prediction of Compressive Strength of Geopolymer Concrete.
    Ali Khan M; Zafar A; Akbar A; Javed MF; Mosavi A
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Artificial Intelligence Strategies to Estimate the Strength of Geopolymer Composites and Influence of Input Parameters.
    Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Al-Faiad MA
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on the Relationship between Nano Modifications of Geopolymer Concrete and Their Structural Characteristics.
    Shilar FA; Ganachari SV; Patil VB; Khan TMY; Almakayeel NM; Alghamdi S
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geopolymer Concrete with Lightweight Artificial Aggregates.
    Kalinowska-Wichrowska K; Pawluczuk E; Bołtryk M; Nietupski A
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model.
    Khalaf AA; Kopecskó K; Merta I
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength and durability characteristics of steel fiber-reinforced geopolymer concrete with addition of waste materials.
    Natarajan KS; Yacinth SIB; Veerasamy K
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99026-99035. PubMed ID: 35933526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.