These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 35596130)
1. A comprehensive study on size and definition of the core group in the proven and young algorithm for single-step GBLUP. Abdollahi-Arpanahi R; Lourenco D; Misztal I Genet Sel Evol; 2022 May; 54(1):34. PubMed ID: 35596130 [TBL] [Abstract][Full Text] [Related]
2. Is single-step genomic REML with the algorithm for proven and young more computationally efficient when less generations of data are present? Junqueira VS; Lourenco D; Masuda Y; Cardoso FF; Lopes PS; Silva FFE; Misztal I J Anim Sci; 2022 May; 100(5):. PubMed ID: 35289906 [TBL] [Abstract][Full Text] [Related]
3. The quality of the algorithm for proven and young with various sets of core animals in a multibreed sheep population1. Nilforooshan MA; Lee M J Anim Sci; 2019 Mar; 97(3):1090-1100. PubMed ID: 30624671 [TBL] [Abstract][Full Text] [Related]
4. Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young. Bermann M; Lourenco D; Misztal I J Anim Sci; 2022 Jan; 100(1):. PubMed ID: 34877603 [TBL] [Abstract][Full Text] [Related]
5. Core-dependent changes in genomic predictions using the Algorithm for Proven and Young in single-step genomic best linear unbiased prediction. Misztal I; Tsuruta S; Pocrnic I; Lourenco D J Anim Sci; 2020 Dec; 98(12):. PubMed ID: 33211798 [TBL] [Abstract][Full Text] [Related]
6. Theoretical accuracy for indirect predictions based on SNP effects from single-step GBLUP. Garcia A; Aguilar I; Legarra A; Tsuruta S; Misztal I; Lourenco D Genet Sel Evol; 2022 Sep; 54(1):66. PubMed ID: 36162979 [TBL] [Abstract][Full Text] [Related]
7. Leveraging low-density crossbred genotypes to offset crossbred phenotypes and their impact on purebred predictions. Leite NG; Chen CY; Herring WO; Holl J; Tsuruta S; Lourenco D J Anim Sci; 2022 Dec; 100(12):. PubMed ID: 36309902 [TBL] [Abstract][Full Text] [Related]
8. Indirect predictions with a large number of genotyped animals using the algorithm for proven and young. Garcia ALS; Masuda Y; Tsuruta S; Miller S; Misztal I; Lourenco D J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32374831 [TBL] [Abstract][Full Text] [Related]
10. The Dimensionality of Genomic Information and Its Effect on Genomic Prediction. Pocrnic I; Lourenco DA; Masuda Y; Legarra A; Misztal I Genetics; 2016 May; 203(1):573-81. PubMed ID: 26944916 [TBL] [Abstract][Full Text] [Related]
11. Comparing algorithms to approximate accuracies for single-step genomic best linear unbiased predictor. Ramos P; Garcia A; Retallik K; Bermann M; Tsuruta S; Misztal I; Veroneze R; Lourenco D J Anim Sci; 2024 Jan; 102():. PubMed ID: 39011991 [TBL] [Abstract][Full Text] [Related]
12. Solving efficiently large single-step genomic best linear unbiased prediction models. Strandén I; Matilainen K; Aamand GP; Mäntysaari EA J Anim Breed Genet; 2017 Jun; 134(3):264-274. PubMed ID: 28508482 [TBL] [Abstract][Full Text] [Related]
13. Crossbred evaluations using single-step genomic BLUP and algorithm for proven and young with different sources of data1. Pocrnic I; Lourenco DAL; Chen CY; Herring WO; Misztal I J Anim Sci; 2019 Apr; 97(4):1513-1522. PubMed ID: 30726939 [TBL] [Abstract][Full Text] [Related]
14. On the equivalence between marker effect models and breeding value models and direct genomic values with the Algorithm for Proven and Young. Bermann M; Lourenco D; Forneris NS; Legarra A; Misztal I Genet Sel Evol; 2022 Jul; 54(1):52. PubMed ID: 35842585 [TBL] [Abstract][Full Text] [Related]
15. Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species. Pocrnic I; Lourenco DA; Masuda Y; Misztal I Genet Sel Evol; 2016 Oct; 48(1):82. PubMed ID: 27799053 [TBL] [Abstract][Full Text] [Related]
16. Efficient large-scale single-step evaluations and indirect genomic prediction of genotyped selection candidates. Vandenplas J; Ten Napel J; Darbaghshahi SN; Evans R; Calus MPL; Veerkamp R; Cromie A; Mäntysaari EA; Strandén I Genet Sel Evol; 2023 Jun; 55(1):37. PubMed ID: 37291510 [TBL] [Abstract][Full Text] [Related]
17. Empirical comparison between different methods for genomic prediction of number of piglets born alive in moderate sized breeding populations. Fangmann A; Sharifi RA; Heinkel J; Danowski K; Schrade H; Erbe M; Simianer H J Anim Sci; 2017 Apr; 95(4):1434-1443. PubMed ID: 28464085 [TBL] [Abstract][Full Text] [Related]
18. Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals. Masuda Y; Misztal I; Tsuruta S; Legarra A; Aguilar I; Lourenco DAL; Fragomeni BO; Lawlor TJ J Dairy Sci; 2016 Mar; 99(3):1968-1974. PubMed ID: 26805987 [TBL] [Abstract][Full Text] [Related]
19. Hot topic: Use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes. Fragomeni BO; Lourenco DA; Tsuruta S; Masuda Y; Aguilar I; Legarra A; Lawlor TJ; Misztal I J Dairy Sci; 2015 Jun; 98(6):4090-4. PubMed ID: 25864050 [TBL] [Abstract][Full Text] [Related]
20. Technical note: Impact of pedigree depth on convergence of single-step genomic BLUP in a purebred swine population. Pocrnic I; Lourenco DAL; Bradford HL; Chen CY; Misztal I J Anim Sci; 2017 Aug; 95(8):3391-3395. PubMed ID: 28805917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]