BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35596151)

  • 1. Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature.
    Vert A; Weber KS; Thai V; Turner E; Beyer KB; Cornish BF; Godkin FE; Wong C; McIlroy WE; Van Ooteghem K
    BMC Med Res Methodol; 2022 May; 22(1):147. PubMed ID: 35596151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity.
    Zhou SM; Hill RA; Morgan K; Stratton G; Gravenor MB; Bijlsma G; Brophy S
    BMJ Open; 2015 May; 5(5):e007447. PubMed ID: 25968000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-wear or sleep? Evaluation of five non-wear detection algorithms for raw accelerometer data.
    Ahmadi MN; Nathan N; Sutherland R; Wolfenden L; Trost SG
    J Sports Sci; 2020 Feb; 38(4):399-404. PubMed ID: 31826746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Using a GENEActiv Accelerometer with Triaxial Acceleration and Temperature Sensors to Monitor Adherence to Shoulder Sling Wear Following Surgery.
    Barakat A; Manga A; Sheikh A; McWilliams R; Rowlands AV; Singh H
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying sedentary time using automated estimates of accelerometer wear time.
    Winkler EA; Gardiner PA; Clark BK; Matthews CE; Owen N; Healy GN
    Br J Sports Med; 2012 May; 46(6):436-42. PubMed ID: 21504965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of accelerometer wear and nonwear time classification algorithm.
    Choi L; Liu Z; Matthews CE; Buchowski MS
    Med Sci Sports Exerc; 2011 Feb; 43(2):357-64. PubMed ID: 20581716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerometer data reduction in adolescents: effects on sample retention and bias.
    Toftager M; Kristensen PL; Oliver M; Duncan S; Christiansen LB; Boyle E; Brønd JC; Troelsen J
    Int J Behav Nutr Phys Act; 2013 Dec; 10():140. PubMed ID: 24359480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Sleep and Nonwear in 24-h Wrist Accelerometer Data from the National Health and Nutrition Examination Survey.
    Thapa-Chhetry B; Arguello DJ; John D; Intille S
    Med Sci Sports Exerc; 2022 Nov; 54(11):1936-1946. PubMed ID: 36007161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a multi-wear-site, deep learning-based physical activity intensity classification algorithm using raw acceleration data.
    Ng JYY; Zhang JH; Hui SS; Jiang G; Yau F; Cheng J; Ha AS
    PLoS One; 2024; 19(3):e0299295. PubMed ID: 38452147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying ActiGraph non-wear time in pregnant women with overweight or obesity.
    Leonard KS; Pauley AM; Hohman EE; Guo P; Rivera DE; Savage JS; Buman MP; Symons Downs D
    J Sci Med Sport; 2020 Dec; 23(12):1197-1201. PubMed ID: 32859522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambulatory sleep scoring using accelerometers-distinguishing between nonwear and sleep/wake states.
    Barouni A; Ottenbacher J; Schneider J; Feige B; Riemann D; Herlan A; El Hardouz D; McLennan D
    PeerJ; 2020; 8():e8284. PubMed ID: 31915581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalizability and performance of methods to detect non-wear with free-living accelerometer recordings.
    Skovgaard EL; Roswall MA; Pedersen NH; Larsen KT; Grøntved A; Brønd JC
    Sci Rep; 2023 Feb; 13(1):2496. PubMed ID: 36782015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying accelerometer nonwear and wear time in older adults.
    Hutto B; Howard VJ; Blair SN; Colabianchi N; Vena JE; Rhodes D; Hooker SP
    Int J Behav Nutr Phys Act; 2013 Oct; 10():120. PubMed ID: 24156309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing sedentary behavior with the GENEActiv: introducing the sedentary sphere.
    Rowlands AV; Olds TS; Hillsdon M; Pulsford R; Hurst TL; Eston RG; Gomersall SR; Johnston K; Langford J
    Med Sci Sports Exerc; 2014 Jun; 46(6):1235-47. PubMed ID: 24263980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison and validation of accelerometer wear time and non-wear time algorithms for assessing physical activity levels in children and adolescents.
    Vanhelst J; Vidal F; Drumez E; Béghin L; Baudelet JB; Coopman S; Gottrand F
    BMC Med Res Methodol; 2019 Apr; 19(1):72. PubMed ID: 30940079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raw Accelerometer Data Analysis with GGIR R-package: Does Accelerometer Brand Matter?
    Rowlands AV; Yates T; Davies M; Khunti K; Edwardson CL
    Med Sci Sports Exerc; 2016 Oct; 48(10):1935-41. PubMed ID: 27183118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
    Choi L; Ward SC; Schnelle JF; Buchowski MS
    Med Sci Sports Exerc; 2012 Oct; 44(10):2009-16. PubMed ID: 22525772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Low Accelerometer Wear Time on the Estimates and Application of Sedentary Behavior and Physical Activity Data in Adults.
    McGrath R; Vella CA; Scruggs PW; Peterson MD; Williams CJ; Paul DR
    J Phys Act Health; 2017 Dec; 14(12):919-924. PubMed ID: 28682660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks.
    Syed S; Morseth B; Hopstock LA; Horsch A
    Sci Rep; 2021 Apr; 11(1):8832. PubMed ID: 33893345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.