These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35596261)

  • 1. Recording Temperature with Magnetic Supraparticles.
    Reichstein J; Müssig S; Bauer H; Wintzheimer S; Mandel K
    Adv Mater; 2022 Aug; 34(31):e2202683. PubMed ID: 35596261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorful Luminescent Magnetic Supraparticles: Expanding the Applicability, Information Capacity, and Security of Micrometer-Scaled Identification Taggants by Dual-Spectral Encoding.
    Müssig S; Reichstein J; Miller F; Mandel K
    Small; 2022 Apr; 18(13):e2107511. PubMed ID: 35146912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically Sensitive and Magnetically Identifiable Supraparticles as Indicators of Surface Abrasion.
    Wenderoth S; Müssig S; Prieschl J; Genin E; Heuzé K; Fidler F; Haddad D; Wintzheimer S; Mandel K
    Nano Lett; 2022 Apr; 22(7):2762-2768. PubMed ID: 35311292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spray-Dried Photonic Balls with a Disordered/Ordered Hybrid Structure for Shear-Stress Indication.
    Wenderoth S; Bleyer G; Endres J; Prieschl J; Vogel N; Wintzheimer S; Mandel K
    Small; 2022 Dec; 18(48):e2203068. PubMed ID: 36253136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Single Magnetic Particle with Nearly Unlimited Encoding Options.
    Müssig S; Reichstein J; Prieschl J; Wintzheimer S; Mandel K
    Small; 2021 Jul; 17(28):e2101588. PubMed ID: 34085395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of concave magnetoplasmonic core-shell supraparticles of gold-coated iron oxide via ion-reducible layer-by-layer method for surface enhanced Raman scattering.
    Lee DK; Song Y; Tran VT; Kim J; Park EY; Lee J
    J Colloid Interface Sci; 2017 Aug; 499():54-61. PubMed ID: 28363104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter.
    Reichstein J; Müssig S; Wintzheimer S; Mandel K
    Adv Mater; 2023 Dec; 35(49):e2306728. PubMed ID: 37786273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient and Controlled Fabrication of Supraparticles by Leidenfrost Phenomenon.
    Liu Z; Liu Y; Yang J; Li S; Peng C; Cui X; Sheng L; Wu B
    Langmuir; 2022 Aug; 38(30):9157-9165. PubMed ID: 35857373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray-Drying and Atomic Layer Deposition: Complementary Tools toward Fully Orthogonal Control of Bulk Composition and Surface Identity of Multifunctional Supraparticles.
    Müssig S; Koch VM; Collados Cuadrado C; Bachmann J; Thommes M; Barr MKS; Mandel K
    Small Methods; 2022 Jan; 6(1):e2101296. PubMed ID: 35041268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal Assembly of Hierarchically Structured Porous Supraparticles from Flower-Shaped Protein-Inorganic Hybrid Nanoparticles.
    Park WM; Champion JA
    ACS Nano; 2016 Sep; 10(9):8271-80. PubMed ID: 27552189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bottom-Up Design of Composite Supraparticles for Powder-Based Additive Manufacturing.
    Canziani H; Chiera S; Schuffenhauer T; Kopp SP; Metzger F; Bück A; Schmidt M; Vogel N
    Small; 2020 Jul; 16(30):e2002076. PubMed ID: 32578351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of strong magnetic micron-sized supraparticles with anisotropic magnetic properties for magnetorheology.
    Morillas JR; Carreón-González E; de Vicente J
    Soft Matter; 2021 Apr; 17(13):3733-3744. PubMed ID: 33704317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supraparticles with a Mechanically Triggerable Color-Change-Effect to Equip Coatings with the Ability to Report Damage.
    Wenderoth S; Eigen A; Wintzheimer S; Prieschl J; Hirsch A; Halik M; Mandel K
    Small; 2022 Apr; 18(15):e2107513. PubMed ID: 35253355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lasing Supraparticles Self-Assembled from Nanocrystals.
    Montanarella F; Urbonas D; Chadwick L; Moerman PG; Baesjou PJ; Mahrt RF; van Blaaderen A; Stöferle T; Vanmaekelbergh D
    ACS Nano; 2018 Dec; 12(12):12788-12794. PubMed ID: 30540430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles.
    Wang J; Kang E; Sultan U; Merle B; Inayat A; Graczykowski B; Fytas G; Vogel N
    J Phys Chem C Nanomater Interfaces; 2021 Oct; 125(42):23445-23456. PubMed ID: 34737841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-amorphous and Hierarchical Fe
    Ma M; Zhu H; Ling J; Gong S; Zhang Y; Xia Y; Tang Z
    ACS Nano; 2020 Apr; 14(4):4036-4044. PubMed ID: 32196312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic particle synthesis inside droplet templates on superhydrophobic surfaces.
    Rastogi V; García AA; Marquez M; Velev OD
    Macromol Rapid Commun; 2010 Jan; 31(2):190-5. PubMed ID: 21590891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping the Assembly of Superparamagnetic Nanoparticles.
    Hu M; Butt HJ; Landfester K; Bannwarth MB; Wooh S; Thérien-Aubin H
    ACS Nano; 2019 Mar; 13(3):3015-3022. PubMed ID: 30802035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-controlled formation of crystalline, Janus, and core-shell supraparticles.
    Kister T; Mravlak M; Schilling T; Kraus T
    Nanoscale; 2016 Jul; 8(27):13377-84. PubMed ID: 27340805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.