These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35596378)

  • 21. Microswimmer Propulsion by Two Steadily Rotating Helical Flagella.
    Shum H
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30669288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Buoyant magnetic milliswimmers reveal design rules for optimizing microswimmer performance.
    Benjaminson E; Imamura T; Lorenz A; Bergbreiter S; Travers M; Taylor RE
    Nanoscale; 2023 Sep; 15(34):14175-14188. PubMed ID: 37593931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced motility of a microswimmer in rigid and elastic confinement.
    Ledesma-Aguilar R; Yeomans JM
    Phys Rev Lett; 2013 Sep; 111(13):138101. PubMed ID: 24116818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Swimming with a cage: low-Reynolds-number locomotion inside a droplet.
    Reigh SY; Zhu L; Gallaire F; Lauga E
    Soft Matter; 2017 May; 13(17):3161-3173. PubMed ID: 28397936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers.
    Singh TS; Singh P; Yadava RDS
    Soft Matter; 2018 Sep; 14(37):7748-7758. PubMed ID: 30206610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice-Boltzmann simulations of microswimmer-tracer interactions.
    de Graaf J; Stenhammar J
    Phys Rev E; 2017 Feb; 95(2-1):023302. PubMed ID: 28297968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Swimming Through Parameter Subspaces of a Simple Anguilliform Swimmer.
    Battista NA
    Integr Comp Biol; 2020 Nov; 60(5):1221-1235. PubMed ID: 32926101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Realization of a push-me-pull-you swimmer at low Reynolds numbers.
    Silverberg O; Demir E; Mishler G; Hosoume B; Trivedi N; Tisch C; Plascencia D; Pak OS; Araci IE
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32620000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Load response of shape-changing microswimmers scales with their swimming efficiency.
    Friedrich BM
    Phys Rev E; 2018 Apr; 97(4-1):042416. PubMed ID: 29758744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of body deformability on microswimming.
    Pande J; Merchant L; Krüger T; Harting J; Smith AS
    Soft Matter; 2017 May; 13(21):3984-3993. PubMed ID: 28504290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of an acoustically actuated artificial micro-swimmer.
    Liu J; Ruan H
    Bioinspir Biomim; 2020 Mar; 15(3):036002. PubMed ID: 31923908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple model of a planar undulating magnetic microswimmer.
    Gutman E; Or Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013012. PubMed ID: 25122374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electro-actuated hydrogel walkers with dual responsive legs.
    Morales D; Palleau E; Dickey MD; Velev OD
    Soft Matter; 2014 Mar; 10(9):1337-48. PubMed ID: 24651405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Propulsion of a Two-Sphere Swimmer.
    Klotsa D; Baldwin KA; Hill RJ; Bowley RM; Swift MR
    Phys Rev Lett; 2015 Dec; 115(24):248102. PubMed ID: 26705658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of drafting on hydrodynamic and metabolic responses in front crawl swimming.
    Janssen M; Wilson BD; Toussaint HM
    Med Sci Sports Exerc; 2009 Apr; 41(4):837-43. PubMed ID: 19276849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-separation models for swimming enhancement in complex fluids.
    Man Y; Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023004. PubMed ID: 26382500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the cross-streamline lift of microswimmers in viscoelastic flows.
    Choudhary A; Stark H
    Soft Matter; 2021 Dec; 18(1):48-52. PubMed ID: 34878484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Helical Locomotion in Yield Stress Fluids.
    Nazari F; Shoele K; Mohammadigoushki H
    Phys Rev Lett; 2023 Mar; 130(11):114002. PubMed ID: 37001094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.