These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 35596607)

  • 1. Multifaceted Cargo Recruitment and Release from Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Zhang T; Lam JWY; Tang BZ; Chau Y
    Small; 2022 Jun; 18(25):e2201721. PubMed ID: 35596607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MLOsMetaDB, a meta-database to centralize the information on liquid-liquid phase separation proteins and membraneless organelles.
    Orti F; Fernández ML; Marino-Buslje C
    Protein Sci; 2024 Jan; 33(1):e4858. PubMed ID: 38063081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).
    Sehgal PB; Westley J; Lerea KM; DiSenso-Browne S; Etlinger JD
    Anal Biochem; 2020 May; 597():113691. PubMed ID: 32194074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in
    Whitman BT; Wang Y; Murray CRA; Glover MJN; Owttrim GW
    Appl Environ Microbiol; 2023 Apr; 89(4):e0001523. PubMed ID: 36920190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in design and application of synthetic membraneless organelles.
    Wan L; Zhu Y; Zhang W; Mu W
    Biotechnol Adv; 2024; 73():108355. PubMed ID: 38588907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological Liquid-Liquid Phase Separation, Biomolecular Condensates, and Membraneless Organelles: Now You See Me, Now You Don't.
    Uversky VN
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Membraneless organelles and liquid-liquid phase separation – methods for their characterisation].
    Tarczewska A; Wycisk K; Sozańska N; Ożyhar A
    Postepy Biochem; 2020 Jun; 66(2):111-124. PubMed ID: 32700504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal dynamic regulation of membraneless organelles by chaperone networks.
    Li D; Liu C
    Trends Cell Biol; 2022 Jan; 32(1):1-3. PubMed ID: 34544610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of biomolecular phase behavior by metal ions.
    Sołtys K; Tarczewska A; Bystranowska D
    Biochim Biophys Acta Mol Cell Res; 2023 Dec; 1870(8):119567. PubMed ID: 37582439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics.
    Chan KWY; Navi M; Kieda J; Moran T; Hammers D; Lee S; Tsai SSH
    Lab Chip; 2022 Jul; 22(14):2647-2656. PubMed ID: 35616128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Bonding-Driven Self-Coacervation of Nonionic Homopolymers for Stimuli-Triggered Therapeutic Release.
    Chowdhury P; Saha B; Bauri K; Sumerlin BS; De P
    J Am Chem Soc; 2024 Aug; 146(31):21664-21676. PubMed ID: 39058398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimalist Design of an Intrinsically Disordered Protein-Mimicking Scaffold for an Artificial Membraneless Organelle.
    Liu J; Zhorabek F; Dai X; Huang J; Chau Y
    ACS Cent Sci; 2022 Apr; 8(4):493-500. PubMed ID: 35505868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird's-Eye View.
    Fefilova AS; Fonin AV; Vishnyakov IE; Kuznetsova IM; Turoverov KK
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RPS: a comprehensive database of RNAs involved in liquid-liquid phase separation.
    Liu M; Li H; Luo X; Cai J; Chen T; Xie Y; Ren J; Zuo Z
    Nucleic Acids Res; 2022 Jan; 50(D1):D347-D355. PubMed ID: 34718734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guide to regulation of the formation of biomolecular condensates.
    Bratek-Skicki A; Pancsa R; Meszaros B; Van Lindt J; Tompa P
    FEBS J; 2020 May; 287(10):1924-1935. PubMed ID: 32080961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the phase separation-organized membraneless organelles in cells: a narrative review.
    Li W; Jiang C; Zhang E
    Transl Cancer Res; 2021 Nov; 10(11):4929-4946. PubMed ID: 35116344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.
    Guo G; Wang X; Zhang Y; Li T
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational resources for identifying and describing proteins driving liquid-liquid phase separation.
    Pancsa R; Vranken W; Mészáros B
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.