BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35596813)

  • 1. Use of a deep-learning-based lumen extraction method to detect significant stenosis on coronary computed tomography angiography in patients with severe coronary calcification.
    Inage H; Tomizawa N; Otsuka Y; Aoshima C; Kawaguchi Y; Takamura K; Matsumori R; Kamo Y; Nozaki Y; Takahashi D; Kudo A; Hiki M; Kogure Y; Fujimoto S; Minamino T; Aoki S
    Egypt Heart J; 2022 May; 74(1):43. PubMed ID: 35596813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified Subtraction Coronary CT Angiography with a Two-Breathhold Technique: Image Quality and Diagnostic Accuracy in Patients with Coronary Calcifications.
    Guo W; Tripathi P; Yang S; Qian J; Rai B; Zeng M
    Korean J Radiol; 2019 Jul; 20(7):1146-1155. PubMed ID: 31270978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtraction improves the accuracy of coronary CT angiography for detecting obstructive disease in severely calcified segments.
    Xu L; Li F; Wu K; Zhong Z; Huang R; Xu Y; Wang Z; Yang Z; He Y
    Eur Radiol; 2021 Aug; 31(8):6211-6219. PubMed ID: 34142220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality.
    Liu CY; Tang CX; Zhang XL; Chen S; Xie Y; Zhang XY; Qiao HY; Zhou CS; Xu PP; Lu MJ; Li JH; Lu GM; Zhang LJ
    Eur J Radiol; 2021 Sep; 142():109835. PubMed ID: 34237493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic accuracy of a modified subtraction coronary CT angiography method with short breath-holding time: a feasibility study.
    Yoshioka K; Tanaka R; Takagi H; Nagata K; Chiba T; Takeda K; Ueda T; Sugawara T; Sasaki A; Ueyama Y; Kikuchi K; Sasaki T
    Br J Radiol; 2016 Oct; 89(1066):20160489. PubMed ID: 27439592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis.
    van Hamersvelt RW; Zreik M; Voskuil M; Viergever MA; Išgum I; Leiner T
    Eur Radiol; 2019 May; 29(5):2350-2359. PubMed ID: 30421020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The usefulness of low radiation dose subtraction coronary computed tomography angiography for patients with calcification using 320-row area detector CT.
    Takamura K; Fujimoto S; Kawaguchi Y; Kato E; Aoshima C; Hiki M; Kumamaru KK; Daida H
    J Cardiol; 2019 Jan; 73(1):58-64. PubMed ID: 29937106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtraction coronary computed tomography in patients with severe calcification.
    Amanuma M; Kondo T; Sano T; Sekine T; Takayanagi T; Matsutani H; Arai T; Morita H; Ishizaka K; Arakita K; Iwasa A; Takase S
    Int J Cardiovasc Imaging; 2015 Dec; 31(8):1635-42. PubMed ID: 26288954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR: a Chinese multicenter study.
    Di Jiang M; Zhang XL; Liu H; Tang CX; Li JH; Wang YN; Xu PP; Zhou CS; Zhou F; Lu MJ; Zhang JY; Yu MM; Hou Y; Zheng MW; Zhang B; Zhang DM; Yi Y; Xu L; Hu XH; Yang J; Lu GM; Ni QQ; Zhang LJ
    Eur Radiol; 2021 Mar; 31(3):1482-1493. PubMed ID: 32929641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis.
    Han D; Liu J; Sun Z; Cui Y; He Y; Yang Z
    Comput Methods Programs Biomed; 2020 Nov; 196():105651. PubMed ID: 32712571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve.
    Yoon YE; Choi JH; Kim JH; Park KW; Doh JH; Kim YJ; Koo BK; Min JK; Erglis A; Gwon HC; Choe YH; Choi DJ; Kim HS; Oh BH; Park YB
    JACC Cardiovasc Imaging; 2012 Nov; 5(11):1088-96. PubMed ID: 23153908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective comparison of integrated on-site CT-fractional flow reserve and static CT perfusion with coronary CT angiography for detection of flow-limiting coronary stenosis.
    Guo W; Lin Y; Taniguchi A; Zhu Y; Tripathi P; Yang S; Liu J; Yun H; Jin H; Zhang J; Yang J; Zeng M
    Eur Radiol; 2021 Jul; 31(7):5096-5105. PubMed ID: 33409778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry.
    Tesche C; Otani K; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Baumann S; Renker M; Bayer RR; Duguay TM; Litwin SE; Varga-Szemes A; Steinberg DH; Yang DH; Kepka C; Persson A; Nieman K; Schoepf UJ
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):760-770. PubMed ID: 31422141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic performance of quantitative coronary computed tomography angiography and quantitative coronary angiography to predict hemodynamic significance of intermediate-grade stenoses.
    Ghekiere O; Dewilde W; Bellekens M; Hoa D; Couvreur T; Djekic J; Coolen T; Mancini I; Vanhoenacker PK; Dendale P; Nchimi A
    Int J Cardiovasc Imaging; 2015 Dec; 31(8):1651-61. PubMed ID: 26323355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-diagnostic coronary artery calcification and stenosis: a correlation of coronary computed tomography angiography and invasive coronary angiography.
    Engel LC; Thai WE; Medina-Zuluaga H; Karolyi M; Sidhu MS; Maurovich-Horvat P; Margey R; Pomerantsev E; Abbara S; Ghoshhajra BB; Hoffmann U; Liew GY
    Acta Radiol; 2017 May; 58(5):528-536. PubMed ID: 27614067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve.
    Jiang W; Pan Y; Hu Y; Leng X; Jiang J; Feng L; Xia Y; Sun Y; Wang J; Xiang J; Li C
    Biomed Eng Online; 2021 Aug; 20(1):77. PubMed ID: 34348731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic Accuracy of Subtraction Coronary CT Angiography in Severely Calcified Segments: Comparison Between Readers With Different Levels of Experience.
    Li F; He Q; Xu L; Zhou Y; Sun Y; Wang Z; Xu Y; Yang Z; He Y
    Front Cardiovasc Med; 2022; 9():828751. PubMed ID: 35387432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified Subtraction Coronary CT Angiography Method for Patients Unable to Perform Long Breath-Holds: A Preliminary Study.
    Yoshioka K; Tanaka R; Nagata K; Sasaki T; Takeda K; Ueda T; Sugawara T; Ueyama Y; Chiba T; Sasaki A; Kikuchi K
    Acad Radiol; 2016 Sep; 23(9):1170-5. PubMed ID: 27426980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving CCTA-based lesions' hemodynamic significance assessment by accounting for partial volume modeling in automatic coronary lumen segmentation.
    Freiman M; Nickisch H; Prevrhal S; Schmitt H; Vembar M; Maurovich-Horvat P; Donnelly P; Goshen L
    Med Phys; 2017 Mar; 44(3):1040-1049. PubMed ID: 28112409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia.
    von Knebel Doeberitz PL; De Cecco CN; Schoepf UJ; Duguay TM; Albrecht MH; van Assen M; Bauer MJ; Savage RH; Pannell JT; De Santis D; Johnson AA; Varga-Szemes A; Bayer RR; Schönberg SO; Nance JW; Tesche C
    Eur Radiol; 2019 May; 29(5):2378-2387. PubMed ID: 30523456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.