These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35596813)

  • 41. Diagnostic Accuracy of Noninvasive 64-row Computed Tomographic Coronary Angiography (CCTA) Compared with Myocardial Perfusion Imaging (MPI): The PICTURE Study, A Prospective Multicenter Trial.
    Budoff MJ; Li D; Kazerooni EA; Thomas GS; Mieres JH; Shaw LJ
    Acad Radiol; 2017 Jan; 24(1):22-29. PubMed ID: 27771227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Additional diagnostic value of first-pass myocardial perfusion imaging without stress when combined with 64-row detector coronary CT angiography in patients with coronary artery disease.
    Osawa K; Miyoshi T; Koyama Y; Hashimoto K; Sato S; Nakamura K; Nishii N; Kohno K; Morita H; Kanazawa S; Ito H
    Heart; 2014 Jul; 100(13):1008-15. PubMed ID: 24763490
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography.
    Kumamaru KK; Fujimoto S; Otsuka Y; Kawasaki T; Kawaguchi Y; Kato E; Takamura K; Aoshima C; Kamo Y; Kogure Y; Inage H; Daida H; Aoki S
    Eur Heart J Cardiovasc Imaging; 2020 Apr; 21(4):437-445. PubMed ID: 31230076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A study of noninvasive fractional flow reserve derived from a simplified method based on coronary computed tomography angiography in suspected coronary artery disease.
    Shi C; Zhang D; Cao K; Zhang T; Luo L; Liu X; Zhang H
    Biomed Eng Online; 2017 Apr; 16(1):43. PubMed ID: 28407768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diagnostic Improvements of Deep Learning-Based Image Reconstruction for Assessing Calcification-Related Obstructive Coronary Artery Disease.
    Yi Y; Xu C; Xu M; Yan J; Li YY; Wang J; Yang SJ; Guo YB; Wang Y; Li YM; Jin ZY; Wang YN
    Front Cardiovasc Med; 2021; 8():758793. PubMed ID: 34805313
    [No Abstract]   [Full Text] [Related]  

  • 46. Deep learning-based prediction for significant coronary artery stenosis on coronary computed tomography angiography in asymptomatic populations.
    Lee H; Kang BG; Jo J; Park HE; Yoon S; Choi SY; Kim MJ
    Front Cardiovasc Med; 2023; 10():1167468. PubMed ID: 37416918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined cCTA and TAVR Planning for Ruling Out Significant CAD: Added Value of ML-Based CT-FFR.
    Gohmann RF; Pawelka K; Seitz P; Majunke N; Heiser L; Renatus K; Desch S; Lauten P; Holzhey D; Noack T; Wilde J; Kiefer P; Krieghoff C; Lücke C; Gottschling S; Ebel S; Borger MA; Thiele H; Panknin C; Horn M; Abdel-Wahab M; Gutberlet M
    JACC Cardiovasc Imaging; 2022 Mar; 15(3):476-486. PubMed ID: 34801449
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study.
    Koo BK; Erglis A; Doh JH; Daniels DV; Jegere S; Kim HS; Dunning A; DeFrance T; Lansky A; Leipsic J; Min JK
    J Am Coll Cardiol; 2011 Nov; 58(19):1989-97. PubMed ID: 22032711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diagnostic performance of corrected FFR
    Wen D; Zhao H; Zhong S; Li C; Liu B; An R; Zheng M
    Eur Radiol; 2021 Dec; 31(12):9232-9239. PubMed ID: 34080038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coronary artery to aortic luminal attenuation ratio in coronary CT angiography for the diagnosis of haemodynamically significant coronary artery stenosis.
    Misaka T; Sugitani Y; Asato N; Matsukubo Y; Uemura M; Ashikaga R; Ishida T
    Br J Radiol; 2020 Jan; 93(1105):20190003. PubMed ID: 31738082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Effect of Severe Coronary Calcification on Diagnostic Performance of Computed Tomography-Derived Fractional Flow Reserve Analyses in People with Coronary Artery Disease.
    Žuža I; Nadarević T; Jakljević T; Bartolović N; Kovačić S
    Diagnostics (Basel); 2024 Aug; 14(16):. PubMed ID: 39202227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of SSF on Diagnostic Performance of Coronary Computed Tomography Angiography Within 1 Heart Beat in Patients With High Heart Rate Using a 256-Row Detector Computed Tomography.
    Liang J; Wang H; Xu L; Dong L; Fan Z; Wang R; Sun Z
    J Comput Assist Tomogr; 2018; 42(1):54-61. PubMed ID: 28708724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of the commercial coronary computed tomographic angiography artificial intelligence for coronary artery stenosis: a cross-sectional study.
    Han Q; Jing F; Sun Z; Liu F; Zhang J; Wang J; Liang H
    Quant Imaging Med Surg; 2023 Jun; 13(6):3789-3801. PubMed ID: 37284069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR.
    Hu X; Yang M; Han L; Du Y
    Int J Cardiovasc Imaging; 2018 Dec; 34(12):1987-1996. PubMed ID: 30062537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Diagnostic Performance of Coronary CT Angiography for the Assessment of Coronary Stenosis in Calcified Plaque.
    Qi L; Tang LJ; Xu Y; Zhu XM; Zhang YD; Shi HB; Yu RB
    PLoS One; 2016; 11(5):e0154852. PubMed ID: 27149622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subtraction CT angiography improves evaluation of significant coronary artery disease in patients with severe calcifications or stents-the C-Sub 320 multicenter trial.
    Fuchs A; Kühl JT; Chen MY; Viladés Medel D; Alomar X; Shanbhag SM; Helqvist S; Kofoed KF
    Eur Radiol; 2018 Oct; 28(10):4077-4085. PubMed ID: 29696430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incremental Diagnostic Value of CT Fractional Flow Reserve Using Subtraction Method in Patients with Severe Calcification: A Pilot Study.
    Kamo Y; Fujimoto S; Nozaki YO; Aoshima C; Kawaguchi YO; Dohi T; Kudo A; Takahashi D; Takamura K; Hiki M; Okai I; Okazaki S; Tomizawa N; Kumamaru KK; Aoki S; Minamino T
    J Clin Med; 2021 Sep; 10(19):. PubMed ID: 34640414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis.
    Zreik M; Lessmann N; van Hamersvelt RW; Wolterink JM; Voskuil M; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2018 Feb; 44():72-85. PubMed ID: 29197253
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Utility of coronary CT angiography in outpatients with hypertrophic cardiomyopathy presenting with angina symptoms.
    Shariat M; Thavendiranathan P; Nguyen E; Wintersperger B; Paul N; Rakowski H; Crean AM
    J Cardiovasc Comput Tomogr; 2014; 8(6):429-37. PubMed ID: 25467830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of machine-learning CT-derived fractional flow reserve for the diagnosis and management of coronary artery disease in the randomized CRESCENT trials.
    Nous FMA; Budde RPJ; Lubbers MM; Yamasaki Y; Kardys I; Bruning TA; Akkerhuis JM; Kofflard MJM; Kietselaer B; Galema TW; Nieman K
    Eur Radiol; 2020 Jul; 30(7):3692-3701. PubMed ID: 32166492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.