BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35596895)

  • 1. Bone response in vivo of Ti-45Zr alloy as dental implant material.
    Ou P; Zhang T; Wang J; Li C; Shao C; Ruan J
    J Mater Sci Mater Med; 2022 May; 33(6):47. PubMed ID: 35596895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti-Zr alloys for dental application.
    Wang B; Ruan W; Liu J; Zhang T; Yang H; Ruan J
    J Biomater Appl; 2019 Jan; 33(6):766-775. PubMed ID: 30396325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J
    Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytocompatibility of Ti-xZr alloys as dental implant materials.
    Ou P; Hao C; Liu J; He R; Wang B; Ruan J
    J Mater Sci Mater Med; 2021 Apr; 32(5):50. PubMed ID: 33891193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nb-Ti-Zr alloys for orthopedic implants.
    Zhang T; Ou P; Ruan J; Yang H
    J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus.
    Bai Y; Deng Y; Zheng Y; Li Y; Zhang R; Lv Y; Zhao Q; Wei S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():565-576. PubMed ID: 26652409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti-Nb-Zr-Ta-Sn.
    Khrunyk YY; Ehnert S; Grib SV; Illarionov AG; Stepanov SI; Popov AA; Ryzhkov MA; Belikov SV; Xu Z; Rupp F; Nüssler AK
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
    Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement.
    Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H
    Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus.
    Miura K; Yamada N; Hanada S; Jung TK; Itoi E
    Acta Biomater; 2011 May; 7(5):2320-6. PubMed ID: 21316491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of biocompatibility and osseointegration of Nb-
    Ou P; Hao C; Liu J; Yang H; He R; Zhang T; Wang Y; Ruan J
    Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33296892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application.
    Liu R; Tang Y; Zeng L; Zhao Y; Ma Z; Sun Z; Xiang L; Ren L; Yang K
    Dent Mater; 2018 Aug; 34(8):1112-1126. PubMed ID: 29709241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histomorphometric assessments of peri-implant bone around Ti-Nb-Sn alloy implants with low Young's modulus.
    Shiraishi N; Masumoto H; Takahashi K; Tenkumo T; Anada T; Suzuki O; Ogawa T; Sasaki K
    Dent Mater J; 2020 Jan; 39(1):148-153. PubMed ID: 31666486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a low elastic modulus and antibacterial Ti-13Nb-13Zr-5Cu titanium alloy by microstructure controlling.
    Shi A; Cai D; Hu J; Zhao X; Qin G; Han Y; Zhang E
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112116. PubMed ID: 34082933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical evaluation of Ti-Nb-Sn alloy implants with a low Young's modulus.
    Takahashi K; Shiraishi N; Ishiko-Uzuka R; Anada T; Suzuki O; Masumoto H; Sasaki K
    Int J Mol Sci; 2015 Mar; 16(3):5779-88. PubMed ID: 25775158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Zr-25Ti-xMo alloys for dental implant application: Properties characterization and surface analysis.
    Wei C; Luo L; Wu Z; Zhang J; Su S; Zhan Y
    J Mech Behav Biomed Mater; 2020 Nov; 111():104017. PubMed ID: 32818772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of bone-dental implant with new ultra low modulus alloy using a numerical approach.
    Piotrowski B; Baptista AA; Patoor E; Bravetti P; Eberhardt A; Laheurte P
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():151-60. PubMed ID: 24656363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study on cytocompatibility and osteogenesis ability of Ti-Cu alloy.
    Liu R; Ma Z; Kunle Kolawole S; Zeng L; Zhao Y; Ren L; Yang K
    J Mater Sci Mater Med; 2019 Jun; 30(7):75. PubMed ID: 31218519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.