These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 3559701)

  • 1. The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior.
    Skottun BC; Bradley A; Sclar G; Ohzawa I; Freeman RD
    J Neurophysiol; 1987 Mar; 57(3):773-86. PubMed ID: 3559701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior.
    Bradley A; Skottun BC; Ohzawa I; Sclar G; Freeman RD
    J Neurophysiol; 1987 Mar; 57(3):755-72. PubMed ID: 3559700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination.
    Bradley A; Skottun BC; Ohzawa I; Sclar G; Freeman RD
    J Opt Soc Am A; 1985 Sep; 2(9):1607-10. PubMed ID: 4045592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus specificity of binocular cells in the cat's visual cortex: ocular dominance and the matching of left and right eyes.
    Skottun BC; Freeman RD
    Exp Brain Res; 1984; 56(2):206-16. PubMed ID: 6479258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern and motion vision in cats with selective loss of cortical directional selectivity.
    Pasternak T; Leinen LJ
    J Neurosci; 1986 Apr; 6(4):938-45. PubMed ID: 3701416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rearing kittens with convergent strabismus on development of receptive-field properties in striate cortex neurons.
    Chino YM; Shansky MS; Jankowski WL; Banser FA
    J Neurophysiol; 1983 Jul; 50(1):265-86. PubMed ID: 6875648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between response amplitude and contrast for cat striate cortical neurones.
    Dean AF
    J Physiol; 1981 Sep; 318():413-27. PubMed ID: 7320898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrageniculostriate vision in the monkey. VII. Contrast sensitivity functions.
    Miller M; Pasik P; Pasik T
    J Neurophysiol; 1980 Jun; 43(6):1510-26. PubMed ID: 7411174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial frequency tuning and contrast threshold of striate neurons in Siamese cats.
    Chino YM; Shansky MS; Jankowski WL
    Exp Brain Res; 1984; 56(2):227-34. PubMed ID: 6479260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast.
    Tolhurst DJ; Movshon JA; Thompson ID
    Exp Brain Res; 1981; 41(3-4):414-9. PubMed ID: 7215502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation and spatial-frequency discrimination for luminance and chromatic gratings.
    Webster MA; De Valois KK; Switkes E
    J Opt Soc Am A; 1990 Jun; 7(6):1034-49. PubMed ID: 2362227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of response functions of cat visual cortical cells by spatially congruent perturbing stimuli.
    Kabara JF; Bonds AB
    J Neurophysiol; 2001 Dec; 86(6):2703-14. PubMed ID: 11731530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1118-35. PubMed ID: 8492152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length and width tuning of neurons in the cat's primary visual cortex.
    DeAngelis GC; Freeman RD; Ohzawa I
    J Neurophysiol; 1994 Jan; 71(1):347-74. PubMed ID: 8158236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferent bases of spatial- and temporal-frequency processing by neurons in the cat's posteromedial lateral suprasylvian cortex: effects of removing areas 17, 18, and 19.
    Guido W; Tong L; Spear PD
    J Neurophysiol; 1990 Nov; 64(5):1636-51. PubMed ID: 2283545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of response properties of cells in the cat's visual cortex at high and low luminance levels.
    Ramoa AS; Freeman RD; Macy A
    J Neurophysiol; 1985 Jul; 54(1):61-72. PubMed ID: 4031982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal decisions for contrast discrimination.
    Sanborn AN; Dayan P
    J Vis; 2011 Dec; 11(14):. PubMed ID: 22159630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex.
    Albrecht DG; Farrar SB; Hamilton DB
    J Physiol; 1984 Feb; 347():713-39. PubMed ID: 6707974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation discrimination depends on spatial frequency.
    Burr DC; Wijesundra SA
    Vision Res; 1991; 31(7-8):1449-52. PubMed ID: 1891831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast coding by cells in the cat's striate cortex: monocular vs. binocular detection.
    Anzai A; Bearse MA; Freeman RD; Cai D
    Vis Neurosci; 1995; 12(1):77-93. PubMed ID: 7718504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.