These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 3559702)

  • 21. Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw.
    Rushmer DS; Roberts WJ; Augter GK
    Brain Res; 1976 Apr; 106(1):1-20. PubMed ID: 1268700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill.
    Drew T; Dubuc R; Rossignol S
    J Neurophysiol; 1986 Feb; 55(2):375-401. PubMed ID: 3950696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs.
    Drew T
    J Neurophysiol; 1993 Jul; 70(1):179-99. PubMed ID: 8360715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climbing fiber action on the responsiveness of Purkinje cells to parallel fiber inputs.
    Ebner TJ; Bloedel JR
    Brain Res; 1984 Aug; 309(1):182-6. PubMed ID: 6488010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of cerebellar Purkinje cells to mechanical perturbations during locomotion of decerebrate cats.
    Matsukawa K; Udo M
    Neurosci Res; 1985 Jun; 2(5):393-8. PubMed ID: 4034104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forelimb electromyographic responses to motor cortex stimulation during locomotion in the cat.
    Armstrong DM; Drew T
    J Physiol; 1985 Oct; 367():327-51. PubMed ID: 4057102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum.
    Barmack NH; Yakhnitsa V
    J Neurosci; 2011 Jul; 31(27):9824-35. PubMed ID: 21734274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking.
    Jiang W; Drew T
    J Neurophysiol; 1996 Aug; 76(2):849-66. PubMed ID: 8871204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reticular neuron activities associated with locomotion in thalamic cats.
    Shimamura M; Kogure I; Wada S
    Brain Res; 1982 Jan; 231(1):51-62. PubMed ID: 7055677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discharge characteristics of neurons in the red nucleus during voluntary gait modifications: a comparison with the motor cortex.
    Lavoie S; Drew T
    J Neurophysiol; 2002 Oct; 88(4):1791-814. PubMed ID: 12364507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion.
    Armstrong DM; Edgley SA; Lidierth M
    J Physiol; 1988 Jun; 400():405-14. PubMed ID: 3418531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mossy and climbing fiber inputs from cutaneous mechanoreceptors to cerebellar Purkynĕ cells in unanesthetized cats.
    Leicht R; Rowe MJ; Schmidt RF
    Exp Brain Res; 1977 Apr; 27(5):459-77. PubMed ID: 856617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cat hindlimb motoneurons during locomotion. III. Functional segregation in sartorius.
    Hoffer JA; Loeb GE; Sugano N; Marks WB; O'Donovan MJ; Pratt CA
    J Neurophysiol; 1987 Feb; 57(2):554-62. PubMed ID: 3559692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex Spike Wars: a New Hope.
    Streng ML; Popa LS; Ebner TJ
    Cerebellum; 2018 Dec; 17(6):735-746. PubMed ID: 29982917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of afferent volleys from the limbs on the discharge patterns of interpositus neurones in cats anaesthetized with alpha-chloralose.
    Armstrong DM; Cogdell B; Harvey R
    J Physiol; 1975 Jun; 248(2):489-517. PubMed ID: 1151794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity.
    Ebner TJ; Bloedel JR
    J Neurophysiol; 1981 May; 45(5):933-47. PubMed ID: 7241178
    [No Abstract]   [Full Text] [Related]  

  • 37. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.
    De Zeeuw CI; Koekkoek SK; Wylie DR; Simpson JI
    J Neurophysiol; 1997 Apr; 77(4):1747-58. PubMed ID: 9114233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum.
    Tong G; Robertson LT; Brons J
    Brain Res; 1993 Jan; 601(1-2):65-75. PubMed ID: 8431787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):184-95. PubMed ID: 3746394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural implications of different profiles between treadmill and overground locomotion timings in cats.
    Wetzel MC; Atwater AE; Wait JV; Stuart DC
    J Neurophysiol; 1975 May; 38(3):492-501. PubMed ID: 1127452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.