These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35597029)
1. Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury. Koschmieder K; Paul MM; van den Heuvel TLA; van der Eerden AW; van Ginneken B; Manniesing R Neuroimage Clin; 2022; 35():103027. PubMed ID: 35597029 [TBL] [Abstract][Full Text] [Related]
2. Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury. van den Heuvel TL; van der Eerden AW; Manniesing R; Ghafoorian M; Tan T; Andriessen TM; Vande Vyvere T; van den Hauwe L; Ter Haar Romeny BM; Goraj BM; Platel B Neuroimage Clin; 2016; 12():241-51. PubMed ID: 27489772 [TBL] [Abstract][Full Text] [Related]
3. Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning. Liu S; Utriainen D; Chai C; Chen Y; Wang L; Sethi SK; Xia S; Haacke EM Neuroimage; 2019 Sep; 198():271-282. PubMed ID: 31121296 [TBL] [Abstract][Full Text] [Related]
4. Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach. Al-Masni MA; Kim WR; Kim EY; Noh Y; Kim DH Neuroimage Clin; 2020; 28():102464. PubMed ID: 33395960 [TBL] [Abstract][Full Text] [Related]
5. Detection of Cerebral Microbleeds in MR Images Using a Single-Stage Triplanar Ensemble Detection Network (TPE-Det). Lee H; Kim JH; Lee S; Jung KJ; Kim WR; Noh Y; Kim EY; Kang KM; Sohn CH; Lee DY; Al-Masni MA; Kim DH J Magn Reson Imaging; 2023 Jul; 58(1):272-283. PubMed ID: 36285604 [TBL] [Abstract][Full Text] [Related]
6. DEEPMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI. Rashid T; Abdulkadir A; Nasrallah IM; Ware JB; Liu H; Spincemaille P; Romero JR; Bryan RN; Heckbert SR; Habes M Sci Rep; 2021 Jul; 11(1):14124. PubMed ID: 34238951 [TBL] [Abstract][Full Text] [Related]
7. Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain. Irimia A; Van Horn JD; Vespa PM Neurobiol Aging; 2018 Jun; 66():158-164. PubMed ID: 29579686 [TBL] [Abstract][Full Text] [Related]
8. CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network. Suwalska A; Wang Y; Yuan Z; Jiang Y; Zhu D; Chen J; Cui M; Chen X; Suo C; Polanska J Comput Biol Med; 2022 Dec; 151(Pt A):106233. PubMed ID: 36370581 [TBL] [Abstract][Full Text] [Related]
9. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks. Qi Dou ; Hao Chen ; Lequan Yu ; Lei Zhao ; Jing Qin ; Defeng Wang ; Mok VC; Lin Shi ; Pheng-Ann Heng IEEE Trans Med Imaging; 2016 May; 35(5):1182-1195. PubMed ID: 26886975 [TBL] [Abstract][Full Text] [Related]
10. A Two Cascaded Network Integrating Regional-based YOLO and 3D-CNN for Cerebral Microbleeds Detection. Al-Masni MA; Kim WR; Kim EY; Noh Y; Kim DH Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1055-1058. PubMed ID: 33018167 [TBL] [Abstract][Full Text] [Related]
11. Cerebral Microbleeds and Structural White Matter Integrity in Patients With Traumatic Brain Injury-A Diffusion Tensor Imaging Study. Dahl J; Tenovuo O; Posti JP; Hirvonen J; Katila AJ; Frantzén J; Maanpää HR; Takala R; Löyttyniemi E; Tallus J; Newcombe V; Menon DK; Hutchinson PJ; Mohammadian M Front Neurol; 2022; 13():888815. PubMed ID: 35711272 [TBL] [Abstract][Full Text] [Related]
15. Automatic detection of cerebral microbleeds using susceptibility weighted imaging and artificial intelligence. Luo Y; Gao K; Fawaz M; Wu B; Zhong Y; Zhou Y; Haacke EM; Dai Y; Liu S Quant Imaging Med Surg; 2024 Mar; 14(3):2640-2654. PubMed ID: 38545040 [TBL] [Abstract][Full Text] [Related]
16. Segmented 3D Echo Planar Acquisition for Rapid Susceptibility-Weighted Imaging: Application to Microhemorrhage Detection in Traumatic Brain Injury. Wang WT; Li N; Papageorgiou I; Chan L; Pham DL; Butman JA J Magn Reson Imaging; 2022 Nov; 56(5):1529-1535. PubMed ID: 35852491 [TBL] [Abstract][Full Text] [Related]
17. The use of susceptibility-weighted imaging to detect cerebral microbleeds after lacunar infarction. Shao L; Wang M; Ge XH; Huang HD; Gao L; Qin JC Eur Rev Med Pharmacol Sci; 2017 Jul; 21(13):3105-3112. PubMed ID: 28742195 [TBL] [Abstract][Full Text] [Related]
18. White matter hyperintensities and cerebral microbleeds in persistent post-traumatic headache attributed to mild traumatic brain injury: a magnetic resonance imaging study. Ashina H; Christensen RH; Al-Khazali HM; Iljazi A; Tolnai D; Eigenbrodt AK; Larsson HBW; Schytz HW; Lindberg U; Amin FM J Headache Pain; 2023 Feb; 24(1):15. PubMed ID: 36823546 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Cheng AL; Batool S; McCreary CR; Lauzon ML; Frayne R; Goyal M; Smith EE Stroke; 2013 Oct; 44(10):2782-6. PubMed ID: 23920014 [TBL] [Abstract][Full Text] [Related]
20. Naïve Bayes classifier assisted automated detection of cerebral microbleeds in susceptibility-weighted imaging brain images. Ateeq T; Faheem ZB; Ghoneimy M; Ali J; Li Y; Baz A Biochem Cell Biol; 2023 Dec; 101(6):562-573. PubMed ID: 37639730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]