BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35597144)

  • 21. A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus.
    Nguyen TT; Kim ER; Gu MB
    Biosens Bioelectron; 2022 Feb; 198():113835. PubMed ID: 34847360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitive and Enzyme-Free Pathogenic Bacteria Detection Through Self-Circulation of Molecular Beacon.
    Dong N; Jiang N; Zhao J; Zhao G; Wang T
    Appl Biochem Biotechnol; 2022 Aug; 194(8):3668-3676. PubMed ID: 35486346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electrochemical biosensor for the highly sensitive detection of Staphylococcus aureus based on SRCA-CRISPR/Cas12a.
    Huang L; Yuan N; Guo W; Zhang Y; Zhang W
    Talanta; 2023 Jan; 252():123821. PubMed ID: 36027620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cas14a1-mediated nucleic acid detectifon platform for pathogens.
    Ge X; Meng T; Tan X; Wei Y; Tao Z; Yang Z; Song F; Wang P; Wan Y
    Biosens Bioelectron; 2021 Oct; 189():113350. PubMed ID: 34049081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.
    Urmann K; Reich P; Walter JG; Beckmann D; Segal E; Scheper T
    J Biotechnol; 2017 Sep; 257():171-177. PubMed ID: 28131857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. trans Single-Stranded DNA Cleavage via CRISPR/Cas14a1 Activated by Target RNA without Destruction.
    Wei Y; Yang Z; Zong C; Wang B; Ge X; Tan X; Liu X; Tao Z; Wang P; Ma C; Wan Y; Li J
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24241-24247. PubMed ID: 34553468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of cobalt oxyhydroxide-aptamer-based upconversion sensing nano-system for the rapid detection of Staphylococcus aureus.
    Ouyang Q; Wang B; Ahmad W; Yang Y; Chen Q
    Anal Bioanal Chem; 2022 Dec; 414(29-30):8179-8189. PubMed ID: 36197461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive and on-Site Detection of
    Tao X; Yue L; Tian T; Zhang Y; Zhou X; Song E
    Anal Chem; 2024 Jun; 96(22):9270-9277. PubMed ID: 38770656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in situ quenching electrochemiluminescence biosensor amplified with aptamer recognition-induced multi-DNA release for sensitive detection of pathogenic bacteria.
    Liu S; Li Q; Yang H; Wang P; Miao X; Feng Q
    Biosens Bioelectron; 2022 Jan; 196():113744. PubMed ID: 34736100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone.
    Shrivastava S; Lee WI; Lee NE
    Biosens Bioelectron; 2018 Jun; 109():90-97. PubMed ID: 29533818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitive detection of S. Aureus using aptamer- and vancomycin -copper nanoclusters as dual recognition strategy.
    Bagheri Pebdeni A; Mousavizadegan M; Hosseini M
    Food Chem; 2021 Nov; 361():130137. PubMed ID: 34051601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NIR-driven multifunctional PEC biosensor based on aptamer-modified PDA/MnO
    Cui A; Dong L; Hou Y; Mu X; Sun Y; Wang H; Zhong X; Shan G
    Biosens Bioelectron; 2024 Aug; 257():116320. PubMed ID: 38663324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-free detection of Staphylococcus aureus bacteria using long-period fiber gratings with functional polyelectrolyte coatings.
    Yang F; Chang TL; Liu T; Wu D; Du H; Liang J; Tian F
    Biosens Bioelectron; 2019 May; 133():147-153. PubMed ID: 30927678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification.
    Fang Z; Wu W; Lu X; Zeng L
    Biosens Bioelectron; 2014 Jun; 56():192-7. PubMed ID: 24491961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-based potentiometric biosensor for the immediate detection of living bacteria.
    Hernández R; Vallés C; Benito AM; Maser WK; Rius FX; Riu J
    Biosens Bioelectron; 2014 Apr; 54():553-7. PubMed ID: 24325983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A supersensitive electrochemical sensor based on RCA amplification-assisted "silver chain"-linked gold interdigital electrodes and CRISPR/Cas9 for the detection of Staphylococcus aureus in food.
    Zhen D; Zhang S; Yang A; Ma Q; Deng Z; Fang J; Cai Q; He J
    Food Chem; 2024 May; 440():138197. PubMed ID: 38104453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification.
    Wei L; Wang Z; Wang J; Wang X; Chen Y
    Anal Chim Acta; 2022 Oct; 1230():340357. PubMed ID: 36192057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus.
    Ouyang Q; Yang Y; Ali S; Wang L; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119734. PubMed ID: 33812237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus.
    Reich P; Stoltenburg R; Strehlitz B; Frense D; Beckmann D
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29160851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The rapid and visual detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus using multiplex loop-mediated isothermal amplification linked to a nanoparticle-based lateral flow biosensor.
    Chen X; Ma K; Yi X; Xiong L; Wang Y; Li S
    Antimicrob Resist Infect Control; 2020 Jul; 9(1):111. PubMed ID: 32680560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.