These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35597164)

  • 21. Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records.
    Byrd RJ; Steinhubl SR; Sun J; Ebadollahi S; Stewart WF
    Int J Med Inform; 2014 Dec; 83(12):983-92. PubMed ID: 23317809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Natural Language Processing to Identify Symptom Documentation in Clinical Notes for Patients With Heart Failure Undergoing Cardiac Resynchronization Therapy.
    Leiter RE; Santus E; Jin Z; Lee KC; Yusufov M; Chien I; Ramaswamy A; Moseley ET; Qian Y; Schrag D; Lindvall C
    J Pain Symptom Manage; 2020 Nov; 60(5):948-958.e3. PubMed ID: 32585181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studying Associations Between Heart Failure Self-Management and Rehospitalizations Using Natural Language Processing.
    Topaz M; Radhakrishnan K; Blackley S; Lei V; Lai K; Zhou L
    West J Nurs Res; 2017 Jan; 39(1):147-165. PubMed ID: 27628125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive Risk Models for Wound Infection-Related Hospitalization or ED Visits in Home Health Care Using Machine-Learning Algorithms.
    Song J; Woo K; Shang J; Ojo M; Topaz M
    Adv Skin Wound Care; 2021 Aug; 34(8):1-12. PubMed ID: 34260423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting emergency department visits and hospitalizations for patients with heart failure in home healthcare using a time series risk model.
    Chae S; Davoudi A; Song J; Evans L; Hobensack M; Bowles KH; McDonald MV; Barrón Y; Rossetti SC; Cato K; Sridharan S; Topaz M
    J Am Med Inform Assoc; 2023 Sep; 30(10):1622-1633. PubMed ID: 37433577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Malnutrition and its contributing factors for older people living in residential aged care facilities: Insights from natural language processing of aged care records.
    Alkhalaf M; Zhang Z; Chang HR; Wei W; Yin M; Deng C; Yu P
    Technol Health Care; 2023; 31(6):2267-2278. PubMed ID: 37302059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural language processing for clinical notes in dentistry: A systematic review.
    Pethani F; Dunn AG
    J Biomed Inform; 2023 Feb; 138():104282. PubMed ID: 36623780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated identification and predictive tools to help identify high-risk heart failure patients: pilot evaluation.
    Evans RS; Benuzillo J; Horne BD; Lloyd JF; Bradshaw A; Budge D; Rasmusson KD; Roberts C; Buckway J; Geer N; Garrett T; Lappé DL
    J Am Med Inform Assoc; 2016 Sep; 23(5):872-8. PubMed ID: 26911827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HomeADScreen: Developing Alzheimer's disease and related dementia risk identification model in home healthcare.
    Zolnoori M; Barrón Y; Song J; Noble J; Burgdorf J; Ryvicker M; Topaz M
    Int J Med Inform; 2023 Sep; 177():105146. PubMed ID: 37454558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning.
    Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR
    J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracting social determinants of health from electronic health records using natural language processing: a systematic review.
    Patra BG; Sharma MM; Vekaria V; Adekkanattu P; Patterson OV; Glicksberg B; Lepow LA; Ryu E; Biernacka JM; Furmanchuk A; George TJ; Hogan W; Wu Y; Yang X; Bian J; Weissman M; Wickramaratne P; Mann JJ; Olfson M; Campion TR; Weiner M; Pathak J
    J Am Med Inform Assoc; 2021 Nov; 28(12):2716-2727. PubMed ID: 34613399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records.
    Wang Y; Luo J; Hao S; Xu H; Shin AY; Jin B; Liu R; Deng X; Wang L; Zheng L; Zhao Y; Zhu C; Hu Z; Fu C; Hao Y; Zhao Y; Jiang Y; Dai D; Culver DS; Alfreds ST; Todd R; Stearns F; Sylvester KG; Widen E; Ling XB
    Int J Med Inform; 2015 Dec; 84(12):1039-47. PubMed ID: 26254876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data.
    Sezgin E; Hussain SA; Rust S; Huang Y
    JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying care coordination using natural language processing and domain-specific ontology.
    Popejoy LL; Khalilia MA; Popescu M; Galambos C; Lyons V; Rantz M; Hicks L; Stetzer F
    J Am Med Inform Assoc; 2015 Apr; 22(e1):e93-103. PubMed ID: 25324557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mining Clinicians' Electronic Documentation to Identify Heart Failure Patients with Ineffective Self-Management: A Pilot Text-Mining Study.
    Topaz M; Radhakrishnan K; Lei V; Zhou L
    Stud Health Technol Inform; 2016; 225():856-7. PubMed ID: 27332377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of natural language processing to identify vaccine-related anaphylaxis at five health care systems in the Vaccine Safety Datalink.
    Yu W; Zheng C; Xie F; Chen W; Mercado C; Sy LS; Qian L; Glenn S; Tseng HF; Lee G; Duffy J; McNeil MM; Daley MF; Crane B; McLean HQ; Jackson LA; Jacobsen SJ
    Pharmacoepidemiol Drug Saf; 2020 Feb; 29(2):182-188. PubMed ID: 31797475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural language processing of clinical notes for identification of critical limb ischemia.
    Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM
    Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.