These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 35597361)
1. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Zaller JG; Kruse-Plaß M; Schlechtriemen U; Gruber E; Peer M; Nadeem I; Formayer H; Hutter HP; Landler L Sci Total Environ; 2022 Sep; 838(Pt 2):156012. PubMed ID: 35597361 [TBL] [Abstract][Full Text] [Related]
2. Unexpected air pollutants with potential human health hazards: Nitrification inhibitors, biocides, and persistent organic substances. Zaller JG; Kruse-Plaß M; Schlechtriemen U; Gruber E; Peer M; Nadeem I; Formayer H; Hutter HP; Landler L Sci Total Environ; 2023 Mar; 862():160643. PubMed ID: 36462651 [TBL] [Abstract][Full Text] [Related]
3. Application of 3D-printed pollen traps as a useful tool for exposure and risk assessment of pesticide residues on bumblebees. Kiljanek T Chemosphere; 2024 Jan; 348():140748. PubMed ID: 37992905 [TBL] [Abstract][Full Text] [Related]
4. Pesticide drift mitigation measures appear to reduce contamination of non-agricultural areas, but hazards to humans and the environment remain. Cech R; Zaller JG; Lyssimachou A; Clausing P; Hertoge K; Linhart C Sci Total Environ; 2023 Jan; 854():158814. PubMed ID: 36115411 [TBL] [Abstract][Full Text] [Related]
5. Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers. Van Metre PC; Alvarez DA; Mahler BJ; Nowell L; Sandstrom M; Moran P Environ Pollut; 2017 Jan; 220(Pt A):431-440. PubMed ID: 27697376 [TBL] [Abstract][Full Text] [Related]
6. Passive monitoring techniques to evaluate environmental pesticide exposure: Results from the Infant's Environmental Health study (ISA). Córdoba Gamboa L; Solano Diaz K; Ruepert C; van Wendel de Joode B Environ Res; 2020 May; 184():109243. PubMed ID: 32078818 [TBL] [Abstract][Full Text] [Related]
7. Pesticide Residues in French Soils: Occurrence, Risks, and Persistence. Froger C; Jolivet C; Budzinski H; Pierdet M; Caria G; Saby NPA; Arrouays D; Bispo A Environ Sci Technol; 2023 May; 57(20):7818-7827. PubMed ID: 37172312 [TBL] [Abstract][Full Text] [Related]
8. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Papadakis EN; Vryzas Z; Kotopoulou A; Kintzikoglou K; Makris KC; Papadopoulou-Mourkidou E Ecotoxicol Environ Saf; 2015 Jun; 116():1-9. PubMed ID: 25733189 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China. Li W; Wang B; Yuan Y; Wang S Sci Total Environ; 2023 Apr; 870():161872. PubMed ID: 36716873 [TBL] [Abstract][Full Text] [Related]
10. Agricultural pesticides and veterinary substances in Uruguayan beeswax. Harriet J; Campá JP; Grajales M; Lhéritier C; Gómez Pajuelo A; Mendoza-Spina Y; Carrasco-Letelier L Chemosphere; 2017 Jun; 177():77-83. PubMed ID: 28284118 [TBL] [Abstract][Full Text] [Related]
11. Wild Bee Exposure to Pesticides in Conservation Grasslands Increases along an Agricultural Gradient: A Tale of Two Sample Types. Hladik ML; Kraus JM; Smith CD; Vandever M; Kolpin DW; Givens CE; Smalling KL Environ Sci Technol; 2023 Jan; 57(1):321-330. PubMed ID: 36573799 [TBL] [Abstract][Full Text] [Related]
12. Spatial and temporal distribution of the currently-used and recently-banned pesticides in arable soils of the Czech Republic. Kosubová P; Škulcová L; Poláková Š; Hofman J; Bielská L Chemosphere; 2020 Sep; 254():126902. PubMed ID: 32361539 [TBL] [Abstract][Full Text] [Related]
13. A review of modeling pesticides in freshwaters: Current status, progress achieved and desirable improvements. Centanni M; Ricci GF; De Girolamo AM; Romano G; Gentile F Environ Pollut; 2023 Jan; 316(Pt 2):120553. PubMed ID: 36347410 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal). Palma P; Alvarenga P; Palma V; Matos C; Fernandes RM; Soares A; Barbosa IR Environ Sci Pollut Res Int; 2010 Mar; 17(3):703-16. PubMed ID: 19396484 [TBL] [Abstract][Full Text] [Related]
15. Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects. Lentola A; David A; Abdul-Sada A; Tapparo A; Goulson D; Hill EM Environ Pollut; 2017 Sep; 228():297-304. PubMed ID: 28551560 [TBL] [Abstract][Full Text] [Related]
16. Potential to reduce pesticides in intensive apple production through management practices could be challenged by climatic extremes. Zaller JG; Oswald A; Wildenberg M; Burtscher-Schaden H; Nadeem I; Formayer H; Paredes D Sci Total Environ; 2023 May; 872():162237. PubMed ID: 36796687 [TBL] [Abstract][Full Text] [Related]
17. Quantifying exposure of bumblebee (Bombus spp.) queens to pesticide residues when hibernating in agricultural soils. Rondeau S; Baert N; McArt S; Raine NE Environ Pollut; 2022 Sep; 309():119722. PubMed ID: 35809712 [TBL] [Abstract][Full Text] [Related]
18. Occurrence and distribution of pesticides and transformation products in ambient air in two European agricultural areas. Debler F; Abrantes N; Harkes P; Campos I; Gandrass J Sci Total Environ; 2024 Aug; 940():173705. PubMed ID: 38830419 [TBL] [Abstract][Full Text] [Related]
19. Environmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece). Kapsi M; Tsoutsi C; Paschalidou A; Albanis T Sci Total Environ; 2019 Feb; 650(Pt 2):2188-2198. PubMed ID: 30292989 [TBL] [Abstract][Full Text] [Related]
20. Spatial and temporal variations of currently used pesticides (CUPs) concentrations in ambient air in Wallonia, Belgium. Habran S; Giusti A; Galloy A; Gérard G; Delvaux A; Pigeon O; Remy S Chemosphere; 2024 Mar; 351():141241. PubMed ID: 38242514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]