BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35597433)

  • 21. Bioprinting of pre-vascularized constructs for enhanced
    Son J; Mohamed HJ; Ha W; Naren A; Choi C; Kwon YH; Park S; Joung HC; Kang HW
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 37011612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfabrication of channel arrays promotes vessel-like network formation in cardiac cell construct and vascularization in vivo.
    Zieber L; Or S; Ruvinov E; Cohen S
    Biofabrication; 2014 Jun; 6(2):024102. PubMed ID: 24464741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor.
    Tocchio A; Tamplenizza M; Martello F; Gerges I; Rossi E; Argentiere S; Rodighiero S; Zhao W; Milani P; Lenardi C
    Biomaterials; 2015 Mar; 45():124-31. PubMed ID: 25662502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.
    Takehara H; Sakaguchi K; Sekine H; Okano T; Shimizu T
    Biomed Microdevices; 2019 Dec; 22(1):9. PubMed ID: 31863202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo.
    Neff LP; Tillman BW; Yazdani SK; Machingal MA; Yoo JJ; Soker S; Bernish BW; Geary RL; Christ GJ
    J Vasc Surg; 2011 Feb; 53(2):426-34. PubMed ID: 20934837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered Prevascularization for Oral Tissue Grafting: A Systematic Review.
    Smirani R; Rémy M; Devillard R; Naveau A
    Tissue Eng Part B Rev; 2020 Aug; 26(4):383-398. PubMed ID: 32597330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.
    Wang X; Phan DT; Sobrino A; George SC; Hughes CC; Lee AP
    Lab Chip; 2016 Jan; 16(2):282-90. PubMed ID: 26616908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating lymphangiogenesis in vitro and in vivo using engineered human lymphatic vessel networks.
    Landau S; Newman A; Edri S; Michael I; Ben-Shaul S; Shandalov Y; Ben-Arye T; Kaur P; Zheng MH; Levenberg S
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Vivo Anastomosis and Perfusion of a Three-Dimensionally-Printed Construct Containing Microchannel Networks.
    Sooppan R; Paulsen SJ; Han J; Ta AH; Dinh P; Gaffey AC; Venkataraman C; Trubelja A; Hung G; Miller JS; Atluri P
    Tissue Eng Part C Methods; 2016 Jan; 22(1):1-7. PubMed ID: 26414863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering.
    Contessi Negrini N; Bonnetier M; Giatsidis G; Orgill DP; Farè S; Marelli B
    Acta Biomater; 2019 Mar; 87():61-75. PubMed ID: 30654214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering primitive multiscale chimeric vasculature by combining human microvessels with explanted murine vessels.
    Margolis EA; Choi LS; Friend NE; Putnam AJ
    Sci Rep; 2024 Feb; 14(1):4036. PubMed ID: 38369633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofabricating the vascular tree in engineered bone tissue.
    de Silva L; Bernal PN; Rosenberg A; Malda J; Levato R; Gawlitta D
    Acta Biomater; 2023 Jan; 156():250-268. PubMed ID: 36041651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction.
    Jamaiyar A; Wan W; Ohanyan V; Enrick M; Janota D; Cumpston D; Song H; Stevanov K; Kolz CL; Hakobyan T; Dong F; Newby BZ; Chilian WM; Yin L
    Basic Res Cardiol; 2017 Jul; 112(4):41. PubMed ID: 28540527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach.
    Kang Y; Mochizuki N; Khademhosseini A; Fukuda J; Yang Y
    Acta Biomater; 2015 Jan; 11():449-58. PubMed ID: 25263031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts.
    Huling J; Ko IK; Atala A; Yoo JJ
    Acta Biomater; 2016 Mar; 32():190-197. PubMed ID: 26772527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometric control of vascular networks to enhance engineered tissue integration and function.
    Baranski JD; Chaturvedi RR; Stevens KR; Eyckmans J; Carvalho B; Solorzano RD; Yang MT; Miller JS; Bhatia SN; Chen CS
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7586-91. PubMed ID: 23610423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of Pedicled Smooth Muscle Tissues by Combining the Capsule Tissue and Cell Sheet Engineering.
    Jia Z; Guo H; Xie H; Zhou J; Wang Y; Bao X; Huang Y; Chen F
    Cell Transplant; 2019 Mar; 28(3):328-342. PubMed ID: 30712374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphogenesis of 3D vascular networks is regulated by tensile forces.
    Rosenfeld D; Landau S; Shandalov Y; Raindel N; Freiman A; Shor E; Blinder Y; Vandenburgh HH; Mooney DJ; Levenberg S
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):3215-20. PubMed ID: 26951667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation.
    Landau S; Szklanny AA; Yeo GC; Shandalov Y; Kosobrodova E; Weiss AS; Levenberg S
    Biomaterials; 2017 Apr; 122():72-82. PubMed ID: 28110114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of vascularized tissue constructs under chemically defined culture conditions.
    Sriram G; Handral HK; Gan SU; Islam I; Rufaihah AJ; Cao T
    Biofabrication; 2020 Jul; 12(4):045015. PubMed ID: 32599575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.