BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35597864)

  • 21. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
    Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H
    EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast.
    Jiang L; Cao C; Zhang L; Lin W; Xia J; Xu H; Zhang Y
    FEMS Yeast Res; 2014 Dec; 14(8):1263-72. PubMed ID: 25331360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans.
    Bahn YS; Geunes-Boyer S; Heitman J
    Eukaryot Cell; 2007 Dec; 6(12):2278-89. PubMed ID: 17951522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway.
    Posas F; Witten EA; Saito H
    Mol Cell Biol; 1998 Oct; 18(10):5788-96. PubMed ID: 9742096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions.
    García-Rodriguez LJ; Durán A; Roncero C
    J Bacteriol; 2000 May; 182(9):2428-37. PubMed ID: 10762242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ssk1p-independent activation of Ssk2p plays an important role in the osmotic stress response in Saccharomyces cerevisiae: alternative activation of Ssk2p in osmotic stress.
    Zhi H; Tang L; Xia Y; Zhang J
    PLoS One; 2013; 8(2):e54867. PubMed ID: 23457455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure.
    Torres-Quiroz F; García-Marqués S; Coria R; Randez-Gil F; Prieto JA
    J Biol Chem; 2010 Jun; 285(26):20088-96. PubMed ID: 20430884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor.
    Maeda T; Takekawa M; Saito H
    Science; 1995 Jul; 269(5223):554-8. PubMed ID: 7624781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae.
    Hayashi M; Maeda T
    J Biochem; 2006 Apr; 139(4):797-803. PubMed ID: 16672281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae.
    Kaserer AO; Andi B; Cook PF; West AH
    Biochemistry; 2009 Aug; 48(33):8044-50. PubMed ID: 19618914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae.
    Nasution O; Lee YM; Kim E; Lee Y; Kim W; Choi W
    Biotechnol Bioeng; 2017 Mar; 114(3):620-631. PubMed ID: 27596631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pradimicin resistance of yeast is caused by a mutation of the putative N-glycosylation sites of osmosensor protein Sln1.
    Hiramoto F; Nomura N; Furumai T; Igarashi Y; Oki T
    Biosci Biotechnol Biochem; 2005 Jan; 69(1):238-41. PubMed ID: 15665496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.
    Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H
    Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sphingolipids regulate the yeast high-osmolarity glycerol response pathway.
    Tanigawa M; Kihara A; Terashima M; Takahara T; Maeda T
    Mol Cell Biol; 2012 Jul; 32(14):2861-70. PubMed ID: 22586268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress.
    Winkler A; Arkind C; Mattison CP; Burkholder A; Knoche K; Ota I
    Eukaryot Cell; 2002 Apr; 1(2):163-73. PubMed ID: 12455951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1.
    Ferrigno P; Posas F; Koepp D; Saito H; Silver PA
    EMBO J; 1998 Oct; 17(19):5606-14. PubMed ID: 9755161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence that the MAPK-docking site in MAPKK Dpbs2p is essential for its function.
    Sharma P; Mondal AK
    Biochem Biophys Res Commun; 2006 Jul; 346(2):562-6. PubMed ID: 16765917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway.
    Mapes J; Ota IM
    EMBO J; 2004 Jan; 23(2):302-11. PubMed ID: 14685261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response.
    Mizuno T; Masuda Y; Irie K
    PLoS Genet; 2015; 11(9):e1005491. PubMed ID: 26394309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans.
    Román E; Nombela C; Pla J
    Mol Cell Biol; 2005 Dec; 25(23):10611-27. PubMed ID: 16287872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.