These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 3559811)
1. Inositol supplementation in respiratory distress syndrome: relationship between serum concentration, renal excretion, and lung effluent phospholipids. Hallman M; Arjomaa P; Hoppu K J Pediatr; 1987 Apr; 110(4):604-10. PubMed ID: 3559811 [TBL] [Abstract][Full Text] [Related]
2. Inositol supplementation in premature infants with respiratory distress syndrome. Hallman M; Bry K; Hoppu K; Lappi M; Pohjavuori M N Engl J Med; 1992 May; 326(19):1233-9. PubMed ID: 1560798 [TBL] [Abstract][Full Text] [Related]
3. Role of myoinositol in regulation of surfactant phospholipids in the newborn. Hallman M; Saugstad OD; Porreco RP; Epstein BL; Gluck L Early Hum Dev; 1985 Jan; 10(3-4):245-54. PubMed ID: 3838720 [TBL] [Abstract][Full Text] [Related]
4. Effect of surfactant substitution on lung effluent phospholipids in respiratory distress syndrome: evaluation of surfactant phospholipid turnover, pool size, and the relationship to severity of respiratory failure. Hallman M; Merritt TA; Pohjavuori M; Gluck L Pediatr Res; 1986 Dec; 20(12):1228-35. PubMed ID: 3797115 [TBL] [Abstract][Full Text] [Related]
5. Respiratory distress syndrome and inositol supplementation in preterm infants. Hallman M; Järvenpää AL; Pohjavuori M Arch Dis Child; 1986 Nov; 61(11):1076-83. PubMed ID: 3539028 [TBL] [Abstract][Full Text] [Related]
6. Myoinositol in small preterm infants: relationship between intake and serum concentration. Bromberger P; Hallman M J Pediatr Gastroenterol Nutr; 1986; 5(3):455-8. PubMed ID: 3088251 [TBL] [Abstract][Full Text] [Related]
7. Inositol supplementation in respiratory distress syndrome. Hallman M; Pohjavuori M; Bry K Lung; 1990; 168 Suppl():877-82. PubMed ID: 2117207 [TBL] [Abstract][Full Text] [Related]
8. Randomized, placebo-controlled trial of human surfactant given at birth versus rescue administration in very low birth weight infants with lung immaturity. Merritt TA; Hallman M; Berry C; Pohjavuori M; Edwards DK; Jaaskelainen J; Grafe MR; Vaucher Y; Wozniak P; Heldt G J Pediatr; 1991 Apr; 118(4 Pt 1):581-94. PubMed ID: 2007937 [TBL] [Abstract][Full Text] [Related]
9. Acceleration of pulmonary surfactant maturation in stresses pregnancies: a study of neonatal lung effluent. Obladen M; Merritt TA; Gluck L Am J Obstet Gynecol; 1979 Dec; 135(8):1079-85. PubMed ID: 583203 [TBL] [Abstract][Full Text] [Related]
10. Late Surfactant Administration in Very Preterm Neonates With Prolonged Respiratory Distress and Pulmonary Outcome at 1 Year of Age: A Randomized Clinical Trial. Hascoët JM; Picaud JC; Ligi I; Blanc T; Moreau F; Pinturier MF; Zupan V; Guilhoto I; Hamon IR; Alexandre C; Bouissou A; Storme L; Patkai J; Pomedio M; Rouabah M; Coletto L; Vieux R JAMA Pediatr; 2016 Apr; 170(4):365-72. PubMed ID: 26928567 [TBL] [Abstract][Full Text] [Related]
11. Growth, efficacy, and safety of feeding an iron-fortified human milk fortifier. Berseth CL; Van Aerde JE; Gross S; Stolz SI; Harris CL; Hansen JW Pediatrics; 2004 Dec; 114(6):e699-706. PubMed ID: 15545616 [TBL] [Abstract][Full Text] [Related]
13. Phospholipids in tracheal effluent from infants with severe respiratory distress syndrome. Bose CL; Richardson P; Wood B; Gonzalez F; King J Am J Perinatol; 1984 Apr; 1(3):208-13. PubMed ID: 6549258 [TBL] [Abstract][Full Text] [Related]
14. Increased ADMA levels are associated with poor pulmonary outcome in preterm neonates. Kavurt S; Demirel N; Bas AY; Ulubas Isık D; Ozcan B; Aydemir O J Matern Fetal Neonatal Med; 2017 Apr; 30(7):864-869. PubMed ID: 27268203 [TBL] [Abstract][Full Text] [Related]
15. Early postnatal dexamethasone therapy for the prevention of chronic lung disease in preterm infants with respiratory distress syndrome: a multicenter clinical trial. Yeh TF; Lin YJ; Hsieh WS; Lin HC; Lin CH; Chen JY; Kao HA; Chien CH Pediatrics; 1997 Oct; 100(4):E3. PubMed ID: 9310536 [TBL] [Abstract][Full Text] [Related]
16. Pepsin, a marker of gastric contents, is increased in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Farhath S; He Z; Nakhla T; Saslow J; Soundar S; Camacho J; Stahl G; Shaffer S; Mehta DI; Aghai ZH Pediatrics; 2008 Feb; 121(2):e253-9. PubMed ID: 18245400 [TBL] [Abstract][Full Text] [Related]
17. Lecithin/sphingomyelin ratios in tracheal aspirates from newborn infants. D'Costa M; Dassin R; Bryan H Pediatr Res; 1987 Aug; 22(2):154-7. PubMed ID: 3658540 [TBL] [Abstract][Full Text] [Related]
18. The safety, pharmacokinetics, and anti-inflammatory effects of intratracheal recombinant human Clara cell protein in premature infants with respiratory distress syndrome. Levine CR; Gewolb IH; Allen K; Welch RW; Melby JM; Pollack S; Shaffer T; Pilon AL; Davis JM Pediatr Res; 2005 Jul; 58(1):15-21. PubMed ID: 15774846 [TBL] [Abstract][Full Text] [Related]
19. Elevation of fibronectin levels in lung secretions of infants with respiratory distress syndrome and development of bronchopulmonary dysplasia. Watts CL; Fanaroff AA; Bruce MC J Pediatr; 1992 Apr; 120(4 Pt 1):614-20. PubMed ID: 1552403 [TBL] [Abstract][Full Text] [Related]
20. Serum myoinositol concentrations in premature infants fed human milk, formula for infants, and parenteral nutrition. Pereira GR; Baker L; Egler J; Corcoran L; Chiavacci R Am J Clin Nutr; 1990 Apr; 51(4):589-93. PubMed ID: 2108579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]